

www.usn.no

Faculty of Technology, Natural sciences and Maritime Sciences
Campus Porsgrunn

FMH606 Master's Thesis 2021

<IIA>

The development of a metering reporting
system

Erlend H. Hestnes

www.usn.no

The University of South-Eastern Norway takes no responsibility for the results and
conclusions in this student report.

Course: FMH606 Master's Thesis, 2021

Title: The development of a metering reporting system

Number of pages: 93

Keywords: Study of programming languages, Development process, Web Application,

React, C#, design of an application.

Student: Erlend H. Hestnes

Supervisor: Hans-Petter Halvorsen

External partner: Ineos Rafnes

www.usn.no

The University of South-Eastern Norway takes no responsibility for the results and
conclusions in this student report.

Summary:

The current Metering Reports application at Ineos Rafnes and Inovyn will be outdated when
Microsoft ends internet explorer support. No commercially available off-the-shelf product seems
to be available for a new Metering Reports application. Hence a new custom-made solution shall
be developed.

Ineos Rafnes and Inovyn want a solution that pursues the following design for a new Metering
Reports application: 1) A one to one replacement that is sustainable for the future 2) A modern
application that can be easily modified and maintained 3) An application developed in
programming languages known and used by employees of Inovyn and/or Ineos Rafnes.

A prototype for a new custom-made solution Metering Reports application has been created based
on the current system and user input. A programming language study has been conducted to ensure
a sustainable and endurable alternative is selected for the prototype. The Scrum method has been
utilized to develop a new prototype where the aim has been to develop a new version of the
prototype per iteration. Each version of the prototype has been deployed on a server and tested by
the current application users.

The result of the development process is a flexible design. The flexibility is arranged in the
different operations by having one process for performing desired result dependent upon the
information. Resulting in the maintenance and modifications are a more straightforward
procedure.

The prototype is a custom-made solution that can replace the current system when it is completed.
In addition, the prototype has the potential of being a better system in terms of functionality than
the current system.

 Preface

4

Preface
Choosing development as a topic for the master thesis has its foundation in the advancement
of processes is an eternal chapter.

The motivation for the master thesis is to enhance and empower the skills needed for
developing new web applications.

Thanks to Ineos Rafnes for making it possible to complete the industrial master's program.

A special thanks to:

- Helle Manger, for taking the initiative for the master thesis task. The invaluable support
and guidance throughout the whole process of the master thesis.

- Ole Petter Gusfre, for being interested and giving valuable input for the project

- Tommy Borgen, for the inspiration and facilitate the needed part for the project.

Porsgrunn, 18.05.21

Erlend H. Hestnes

 Contents

5

Contents

Preface ... 4

Contents ... 5

Nomenclature .. 8

1 Introduction ... 9

1.1 Background ... 9
1.2 Problem description ... 10
1.3 Scope ... 10
1.4 Intended Audience .. 10
1.5 Thesis Structure .. 10

2 Working methods .. 11

2.1 Data collection .. 11
2.2 Scrum ... 11
2.3 Unified Process ... 11

3 System requirement specification ... 12

3.1 Main requirements .. 12
3.2 Introduction to the current system ... 12

3.2.1 Monthly report ... 13
3.2.2 Update a Monthly report ... 14
3.2.3 Yearly report .. 16
3.2.4 Manual registration ... 16
3.2.5 Login ... 17

3.3 Databases .. 18
3.4 Functional Design Specification ... 18

4 Selection Phase .. 20

4.1 Definitions ... 20
4.2 Web application .. 21
4.3 Web browser ... 21
4.4 Web server ... 22
4.5 Programming language .. 23
4.6 Client-side programming language .. 25

4.6.1 Website design pattern ... 26
4.6.2 SPA Options .. 27
4.6.3 Choice .. 28

4.7 Server-side programming language ... 29
4.7.1 Framework ... 30

4.8 Interface ... 30
4.9 Development tools .. 30
4.10 Changes .. 31

4.10.1 Utilize the Phdapinet ... 31
4.10.2 Communication with UPHD ... 32

5 Design .. 33

5.1 System ... 33
5.2 Architecture ... 33
5.3 Use cases .. 34

 Contents

6

5.4 Design patterns ... 34
5.5 UI design .. 36
5.6 First draft ... 36
5.7 Development plan ... 36

6 Prototype ... 38

6.1 Get a monthly report... 38
6.2 Update a monthly report .. 40
6.3 Check stored values ... 40
6.4 Get a yearly report .. 41
6.5 Manual registration ... 42
6.6 Login .. 43

7 Frontend .. 45

7.1 React .. 45
7.2 The structure ... 46
7.3 Navigation .. 46
7.4 Functions ... 47

7.4.1 Side menu .. 47
7.4.2 Fetch ... 47
7.4.3 Presenting table with data .. 48

7.5 Components .. 49
7.5.1 Monthly report ... 49
7.5.2 Yearly report .. 51
7.5.3 Manual registration ... 51
7.5.4 Login ... 52

8 Developed Backend .. 53

8.1 Structure .. 53
8.2 Operations ... 55
8.3 Functionality descriptions ... 58

8.3.1 Access Layer ... 58
8.3.2 Business layer ... 59
8.3.3 Data access layer .. 60
8.3.4 Parameters ... 61

8.4 Communication with UPHD ... 61
8.4.1 Posting data ... 61
8.4.2 Extraction of data .. 62
8.4.3 Data storage... 62
8.4.4 Filtration ... 62

9 Testing ... 65

9.1 UI ... 65
9.2 web API .. 65
9.3 Version test ... 65
9.4 User test ... 65

10 Maintenance .. 66

10.1 Version updating ... 66
10.2 Modifications .. 67
10.3 Change of reports .. 67

11 Comparison ... 68

11.1 Technology ... 68
11.2 Design ... 68

 Contents

7

11.3 Performance ... 68
11.4 Maintenance ... 69
11.5 Functionality .. 69
11.6 Status .. 70
11.7 Security ... 70
11.8 Future work .. 71

12 Discussion ... 72

12.1 Study for selection .. 72
12.2 Development process ... 73
12.3 Frontend development .. 74
12.4 Backend development ... 74
12.5 Undeveloped function ... 75
12.6 Testing .. 75
12.7 Documentation ... 76

13 Enhancement .. 77

13.1 Database ... 77
13.2 Correction calculation ... 77
13.3 Automated verification .. 78

14 Conclusion .. 79

References ... 80

Appendices .. 87

 Nomenclature

8

Nomenclature

ASP Active Server Pages

API Application Programming Interface

COTS commercially available off-the-shelf

CSS Cascading Style Sheets

DLL Dynamic-Link Library

FDS Functional Design Specification

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

IIS Internet Information Services

JSON JavaScript Object Notation

MPA Multi-Page Application

OS Operating System

SEO Search Engine Optimization

SPA Single Page Application

UI User Interface

UPHD Uniformance Processes Historian Databases

URL Uniform Resource Locator

XSS Cross-Site Scripting

 1 Introduction

9

1 Introduction
At Ineos Rafnes, there are currently many different Information Technology (IT) solutions in
use. Some IT are specific for Ineos Rafnes, while others are shared with other companies inside
the Ineos Group. As part of daily operation, most of these IT are used and maintained.
Whenever a change of an IT is happening, the rest of the IT bound to this IT has to adapt to
one that has changed.

Microsoft has announced that Internet Explorer will not be supported after 17 of August 2021.
[1] This implies IT using ActiveX, [2] and VBScript [3] for presentation in a web browser
needs to be modified and upgraded to present in another web browser or be replaced. Currently,
Ineos Rafnes has an IT that is currently affected by this change, is called Tarragon. The User
Interface (UI) of Tarragon relies on Internet Explorer.

1.1 Background
The Tarragon application is used for two purposes at Ineos Rafnes and Inovyn; 1) process
overview and main production parameters at business level and 2) fiscal metering reporting.
Ineos Rafnes and Inovyn are looking for replacements for these applications and this report
describes the development of a new application for the fiscal metering reporting.

The metering reports are the basis for financial settlement for products being imported and
exported to the plants at the Rafnes site. Daily and monthly totals are verified and approved
via the metering report application. All data are collected from and stored back to the process
historian databases for Ineos Rafnes and Inovyn.

The purpose of the Metering Reports is to display monthly and yearly reports of products being
imported and exported to the plants. Each of the monthly reports is used to approve the previous
day's measurements for flows of products. When a month has passed all the monthly report
needs to be approved, because they are used in a financial settlement between Ineos Bamble,
Ineos Rafnes, Inovyn, and Yara. Ineos Rafnes and Inovyn are the two companies that perform
the different flows of products and approve the monthly reports. At each Site, key personnel
maintains the measurement equipment and approves the monthly reports they are in charge of.

The Metering Reports web application consists of "Avregning" as the frontend and "TaraStore"
as the backend. It was created around 2005 and has been used since then and maintained by a
contractor. The technology used for the frontend is Microsoft Active Server Pages (ASP) [4].
Each of these reports has its ASP file that contains:

- ASP structure for logic
- HyperText Markup Language (HTML) [5] for static presentation
- JScript [6] and VBScript [7] for dynamic presentation
- Cascading Style Sheets (CSS) [8] for styling.

Both JScript and VBScript are dependent on components included in the web browser Internet
Explorer 11 [11] for running.

TaraStore is currently integrated with two plant historian databases delivered by Honeywell.
Inovyn will change their process historian to a database from AspenTech.

 1 Introduction

10

Ineos Rafnes and Inovyn are searching for a commercially available off-the-shelf (COTS)
product to replace the current Metering Reports application. The arguments for a COTS
product are that the software is updated and maintained by a supplier, and it is not dependent
upon specific developers/persons. A couple of suppliers have been asked if they have a suitable
application. However, none of them have shown a solution covering all the required
functionality. A new custom-made solution is therefore being considered.

1.2 Problem description
No COTS product seems to be available for a new Metering Reports application. Hence a
new custom-made solution shall be developed. Ineos Rafnes and Inovyn want a solution that
pursues the following design for a new Metering Reports application:

- A one to one replacement that is sustainable for the future
- A modern application that can be easily modified and maintained
- An application developed in programming languages known and used by employees

of Inovyn and/or Ineos Rafnes

1.3 Scope
The task for this master thesis is to design and develop a new Metering Reports application.
The scope for this master thesis is the following:

- Perform a study on different programming languages for developing web applications
with a focus on evaluating which of them will endure into the future.

- Set up a development schedule based on given information for a new metering
reporting system, and make it open for changes as the development process unfolds.

- Create a web application for the presentation of the metering reports and test it in
cooperation with the users of the system.

- Integrate the web application for presentation of the metering reports with the
Processes Historian Database system at Ineos Rafnes.

- Test the new metering reporting system and create a test report.
- Create design and user documentation of the new system.

By reformulating the tasks for the thesis, it can be viewed as a study of programming
language and a full-stack development of a web application for a customer.

1.4 Intended Audience
The master thesis is intended for colleagues at Ineos Rafnes.

1.5 Thesis Structure
The structure of this master thesis is based upon the IMRaD.

 2 Working methods

11

2 Working methods
The utilized working methods for the development process are Data collection, Scrum, and
Unified Processes.

2.1 Data collection
Data collection has been elected to perform the study on the programming languages. Data
collection can be view as a mixed study of both Quantitative and Qualitative data, perform as
a survey [9, pp. 204-206]. Quantitative data has been used to determine the viable options to
choose. Qualitative data has been used to present the advantages and disadvantages of the
viable options.

2.2 Scrum
Scrum is an agile development method. The agile methods emphasize face-to-face
communication over written documents. Scrum advocates a team size of 5 to 9 and consists
of inspections and sprints. Inspections mean checking the work, and the goal is to detect
undesirable. A sprint is the timeframe of 14 days or a month to accomplish the set
development plan. The cycle of the Scrum method is first a sprint, then an inspection, and
then it iterates as the project continuous [10, p. 21]. Scrum has been selected as the primary
method for the development method.

2.3 Unified Process
The Unified Process is an iterative and incremental software development process framework
[10, p. 23]. The used methods from the Unified Process framework are:

- Take care of the most important, and often the riskiest areas
- Continuous check of quality with much testing (in each iteration)
- Engage the users for evaluation, feedback, and requirements.

 3 System requirement specification

12

3 System requirement specification
A new custom-made solution requires a set of defined requirements for development.

3.1 Main requirements
The problem description is translated into useable requirements for the development process.

1. A one to one replacement that is sustainable for the future

The term one to one replacement gives the requirement of all the current functionality shall
be replacement. The statement sustainable for the future gives that the replacement shall be
useable for some time into the future.

2. A modern application that can be easily modified and maintained

A modern application gives a requirement of modern technologies shall be used. Easily
modified means that it shall be simple to make a change to the application. Easily maintained
says that it shall be simple to update the application.

3. An application developed in programming languages known and used by employees
of Inovyn and/or Ineos Rafnes

When it comes to a custom-made solution, someone creates it, so the expertise should be in-
house to maintain it. The chosen programming languages shall be known to some employees
of Inovyn and/or Ineos Rafnes. So, the maintenance can be performed by them.

Furthermore, each of the scope statements gives out what is to be achieved and guidelines for
the development process. The scope can be viewed as an extension of the requirements
above.

3.2 Introduction to the current system
The current metering system is the foundation of functionality due to the one to one
replacement. An introduction to how the current system works and looks is required. For
showing what is to be developed as a replacement for it. Figure 3.1 The front of the current
system.

 3 System requirement specification

13

Figure 3.1 front of the current system.

3.2.1 Monthly report
A monthly report can be selected from the folder "Perioderappoter." Once a link for a month
report is clicked, a new tab is opened to select the time interval of the selected monthly
report. Figure 3.2 shows the new tab for the selection of time intervals of the selected
monthly report. The monthly report is fetched when the button "Hent rapport" is clicked.
Figure 3.3 displays the monthly report of the chosen monthly report. The comment of daily
measurements can be viewed as the link reference at the bottom of the page while holding
over the date.

Figure 3.2 the new tab for the selection of time intervals of the selected month report.

 3 System requirement specification

14

Figure 3.3 the presentation of a monthly report.

3.2.2 Update a Monthly report
The update a month report function is displayed if the user is login and then opens a monthly
report. The update menu is displayed below the current report. Figure 3.4 shows the updated
menu of the monthly report. Verification value, correction values, and comments can be
entered here, and all values are sent to storage when the button "Oppdater" is clicked.

 3 System requirement specification

15

Figure 3.4 a monthly report with the update menu displayed.

 3 System requirement specification

16

3.2.3 Yearly report
A yearly report can be selected from the folder "Årsrapporter." The selection menu for
selecting a year appears on the same page. Figure 3.5 shows the selection menu for selecting
a year for a yearly report. The year report is fetched on the selected year when the button
"Hent rapport" is clicked. Figure 3.6 Shows the presentation of the yearly report.

Figure 3.5 the selection menu for selecting a year for a year report.

Figure 3.6 the presentation of the yearly report.

3.2.4 Manual registration
The measurement to manually register can be selected from the folder "Manuell registering"
if the user is login. Figure 3.7shows the presented page to register a measurement with all the
values registered one year back in time. The little table is calculated values between two
registered values. Figure 3.8 shows the registration menu for entering a value and date-time
value.

 3 System requirement specification

17

Figure 3.7 the presented page to register a measurement with all the values registered one year back in time.

Figure 3.8 the registration menu for entering a value and date-time value.

3.2.5 Login
The login is inside the folder "Administrasjon." Figure 3.9 shows how the login page is and
where it is possible to log in. The logout function is linked below the login. If it is clicked, the
user is logged out even if the user was not logged in.

 3 System requirement specification

18

Figure 3.9 the login page.

3.3 Databases
The data is stored inside two different Uniformance Processes Historian Databases (UPHD).
The names of these two UPHD are UPS_RAF and UPS_RAF2. Each of these UPHDs is
running on two different servers. UPS_RAF is running on server FELLES_RA09PHD, and
UPS_RAF2 is running on server ETY_RASV15PHD. Each Process Historian Databases are
products by Honeywell inc. The UPS_RAF2 is version 400, while UPS_RAF is version 321.

There are two different systems because UPS_RAF2 belongs to Ineos Rafnes and UPS_RAF
belongs to Inovyn. Ineos Rafnes choose to continue to use the UPHD product from Honeywell
and upgraded the version this winter. In contrast, Inovyn has decided upon changing out the
UPHD to an IP21 Historian Database by Aspen Tech this summer. Currently, all the data used
for the metering reports are stored in the two UPHD.

3.4 Functional Design Specification
A Functional Design Specification (FDS) was written on how a custom-made solution of a
new Metering Reports application shall work, with the baseline as a one to one replacement.

The features from the FDS are:

- Login
- Presentation of 19 yearly reports
- Presentation of 29 monthly reports
- Manual registration
- Verification of daily measurement
- Correction of daily measurement
- Comment upon a daily measurement
- PHD interface
- Calculation

The non-functional requirements are:

- Available for 7/24 hours
- Termination shall result in a safe system state

 3 System requirement specification

19

- Shall provide fault containment mechanisms to prevent error propagation
- Shall provide error handling to support safety-critical functions
- The user shall be preloaded
- All account/user modifications shall be logged
- Usability shall be measured via user surveys
- Performance of functions shall be tested for timing adequately
- The functionality shall be evaluated via user feedbacks from the system
- Security tests shall be performed sufficiently

File to be integrated for communication with both UPHD:

- Phdapinet.dll

 4 Selection Phase

20

4 Selection Phase
This chapter will be focused on investigating different technologies and selecting different
technologies for a web application with consideration of the specification for a custom-made
solution of a new Metering Reports application.

4.1 Definitions
Frontend

The frontend is everything the user interacts with of a website. In programming terminology,
the frontend is the presentation layer [11].

Backend

The backend is any part of a website that the user does not see. In programming terminology
is the data access layer [12].

Website

A website may be a webpage or collection of webpages [13].

Webpage

A Web page is written in HTML (hypertext markup language) and translated by a Web
browser [14].

Client-side

Client-side refers to operations that the client performs in a client-server relationship of a
computer network [15].

Server-side

Server-side refers to operations that are performed by the server in a client-server relationship
in a computer network [15].

Programming language

A programming language is a computer language used to develop software programs and
scripts for a computer to execute. A programming language has its syntax. The code written
in a programming language is referred to as source code. The source code may be compiled
into machine code for being useable for a computer [18].

Framework

A framework is a platform for developing a software application. It may include a set of
software libraries, compiler, interpreters, or an API. Each framework is based around a
specific programming language [19].

Library

A library is a collection of pre-compiled and non-volatile routines for a programing language
[20].

 4 Selection Phase

21

4.2 Web application
A web application consists of frontend and a backend.

The frontend consists of:

- A web browser
- Client-side programming language

The backend consists of

- A web server and Web hosting service.
- Server-side programming language

All these parts must be investigated frontend and backend and selected.

It is predefined that the server application and the UPHD must be interfaced through an API.
The API for communication with the UPHD is a Dynamic-Link Library (DLL) called
Phdapinet. The Phdapinet is a client portal for interaction with UPHD. The Phdapinet relies
on some other DLL to be utilized, and they are Network, phdknl, phdrapi, and PHDSecurity.
Honeywell created all the DLL and has been chosen for the newest version, which is 400.1.

4.3 Web browser
The user's interface and interaction point will be through a web browser. Figure 4.1 shows the
development of the usage of significant web browsers through the last decade [19].

Figure 4.1 Web Browser Usage Trends [19].

The selected web browsers the frontend shall be compliant whit is Google Chrome and
Microsoft Edge. The two arguments for this choice:

- Google Chrome has the largest marked shared of users.
- Google Chrome and Microsoft Edge are the two available options as default in the

Software Center at Ineos Rafnes and Inovyn.

 4 Selection Phase

22

4.4 Web server
A server is a computer or system integrated into a network that provides data, programs,
resources, or services to other computers through the network. For this project, a web server
is needed for hosting the web application. [20]

A web server hosts programs and data across the internet or an intranet. The interaction from
a client to the webserver happens through a browser on the client computer that sends a
Hypertext Transfer Protocol (HTTP) request. The web server replies with a web page with
the requested content, and it is displayed in the browser on the client computer. [21]

Every web server needs software for hosting web applications. Currently, there is different
software for a web server: Apache, Microsoft Internet Information Services (IIS), NGINX,
OpenResty, or others. The two alternatives that have been chosen to investigate are Apache
and Microsoft ISS. The argument for investigating these two alternatives was because of the
most used web hosting services over time. Figure 4.2 shows the market share of active sites
of web hosting services from 2019 [22].

Figure 4.2 market share of all sites of web hosting services from 2019 [22].

Table 1 shows the difference between Microsoft IIS and Apache [23].

Table 1 IIS vs. Apache [23].

Features Microsoft IIS Apache
Supported OS Windows Linux, Unix, Windows, macOS
User support & fixes Corporate support Community support

Cost Free, but bundled with Windows Completely free
Development Closed, proprietary Open source
Security Excellent Good
Performance Good Good
Market share 32 % 42 %

The web hosting service is selected to be Microsoft IIS. The primary argument is that a
corporation supports it. Supported by a corporation gives the benefit of support if it fails. IIS

 4 Selection Phase

23

has better security than Apache. The downside with ISS is that it only can run on Windows
Operating System (OS), but most computer and servers at Ineos Rafnes mainly runs with
Windows as the OS.

The IT department has provided the server and installed Windows Server 2019 as OS with
Microsoft ISS for hosting the web application.

4.5 Programming language
There is a whole range of programming languages available for creating different types of
programmed applications.

Widely used

To determine if a programming language is widely used, internet searches were used as an
indicator. The TIOBE1 Programming Community index is a good indicator of programming
languages most used amongst people searching code. Figure 4.3 shows the top 10
programming languages that have been searched for over time [24].

Figure 4.3 The TIOBE Programming Community index shown as a graph through time [24].

The graph shows that the top three widely used programming languages for the server-side
are Java, Python and C# (C-scarp). The widely used programming language for client-side
from the graph is JavaScript.

Popular amongst developers

To determine if a programming language popular amongst developers, the communities and
storage places for code and coding had to be investigated. The largest community for
developers is Stack Overflow [25] , and the most prominent place to create and store code is

1 TIOBE (The Importance Of Being Earnest) Software BV

 4 Selection Phase

24

GitHub [26]. Figure 4.4 shows a regression model of the programing language between Stack
Overflow and GitHub. Figure 4.4 reveals which programming languages are popular to create
projects with on GitHub and the popularity of discussed programming languages by
developers using Stack Overflow.

Figure 4.4 regression model of the programing language between Stack Overflow and GitHub [27].

The regression model shows that the top three most popular programming languages for the
server-side are:

1) Java
2) Python
3) C#

For the client-side, the top two most popular programming languages are:

1) JavaScript
2) TypeScript

Known to the same developer.

It is common for a developer to use or know more than one technology. Stack Overflow does
a survey every year where they ask developers which database, framework, language, and
platform they use. Based upon the feedback of the survey, Stack Overflow creates a cluster

 4 Selection Phase

25

diagram. Figure 4.5 shows technologies cluster together into related ecosystems that tend to
be used by the same developers [28].

Figure 4.5 Technologies cluster together into related ecosystems that tend to be used by the same developers

[28].

The cluster diagram indicates that the most popular and widely used programming languages
for server-side and client-side do not tend to be used by the same developer.

4.6 Client-side programming language
A web page consists of Html and CSS can be added for styling. Neither Html and CSS are
technically programming languages because they are page structure and style information
[29]. As for the Client-side programming language is JavaScript. Currently, 97.3% of all the
web site use JavaScript [30]. The Client-side programming language is JavaScript, but there
is a different programming language for the Client-side programming language, but all of
them are compiled into JavaScript. Examples of other pure client-side programming
languages are TypeScript and Elm. In addition, there is a whole range of frameworks and
libraries for client-side programming languages. A web design pattern can be selected to
eliminate some of the options of a client-side programming languages, frameworks, and
libraries.

 4 Selection Phase

26

4.6.1 Website design pattern
There are two main design patterns for a website: single Page Application (SPA) and Multi-
Page Application (MPA). An MPA is considered a traditional website, where the web pages
are requested from the server each time. In comparison, a SPA is loaded dynamically. Each of
these design patterns has different advantages and disadvantages, as shown below [31].

Advantages for an MPA:

- Each page has its own Uniform Resource Locator (URL). This makes it easy to
bookmark the specific page user wants to load [31].

- It is more Search Engine Optimization (SEO) friendly. [32]
- More accessible to scale since there is no limit to the number of pages it can contain.

[32]
- Insightful data analytics to how the users use the pages like how long time they spend

on each page, numbers of daily and monthly visited each page. [32]

Cons for an MPA:

- The development time increases in proportion to the number of pages to be built and
the functionality to be implemented. [32]

- Since each page requires being loaded when the user wants to see them, this may be
perceived as a slow web application. Also, the load on the server will be higher if many
are using it simultaneously. [31]

- The frontend and backend development are tightly coupled, and the developer needs to
use frameworks for either server-side or client-side [33]

Advantages for a SPA:

- Fast and smooth switching between pages without reloading the page due to most
resources being loaded once. [31]

- The development is much faster since fewer pages are created and benefit from being
easier to maintain. [32]

- It separates the frontend for the backend. [31]
- SPA can cache any local storage effectively and work offline with the data that has been

loaded. [32]
- The debugging of a SPA can be done in Google Chrome. [31]

Cons for A SPA

- It is developed using JavaScript frameworks, so if the users have disabled JavaScript in
their browser, it will only show an empty page. [31]

- It is slow to download the first time because a large amount of data is loaded to the
client in the first it is loaded. [33]

- It is more vulnerable to Cross-Site Scripting (XSS) [34]. The reason behind this is that
some features and logic are moved to the client-side. The consequence of this can be a
leak of user sensitive information [32]

The selected design pattern has been selected to a SPA. The arguments are:

- Easier to maintain.
- Fewer web pages need to be created.
- It makes the frontend and backend separated.

 4 Selection Phase

27

4.6.2 SPA Options
The design pattern SPA gives some option to use as of programming language with
framework or libraries. The selected options to review have been chosen to be Vue, Elm, and
React. Selecting these options is because Vue and React are the most popular and wanted
framework and library to use [28], and Elm performs better in comparison [35].

Vue

Vue is a progressive framework for JavaScript to build web interfaces and SPA. Evan You is
the original author of Vue, and it was released in 2014. The origin of Vue is from Angular,
where Evan You attempted to build a tool of the best parts of Angular [36]. Vue has both
advantages and disadvantages, and they are:

Advantages:

- Documentation of Vue is extensive and concise. In addition, the documentation gives
a comparison to other frameworks and libraries [36].

- The data binding of Vue is two-way, giving the benefit of real/time updates [37].
- Vue is both User- and beginner-friendly when having a good understanding of

JavaScript [38].

Disadvantages:

- Language barrier as many discussions, plugin descriptions, and instructions are in
Chinese for Vue [36].

- Vue has excessive code flexibility, and giving room for different programming
approaches can be applied simultaneously [38].

- Vue is still a young framework and is still evolving fast [39].

Elm

Elm is a newcomer and is a programming language compiled to JavaScript, and that makes it
a framework. Elm is created by Evan Czaplicki, which initially started as his master thesis at
Harward University [40]. In common with React, Elm is created for developing SPA. Elm
has been investigated due to its performance outrank other frameworks and libraries [35].
Elm has both advantages and disadvantages, and they are:

Advantages:

- Compiles to JavaScript, making it ideal for building fast-executing UIs with zero
errors at runtime [35].

- It is a functional programming language that is strongly typed and compiled [41].
- Elm is fast and easy to learn [42].

Disadvantages:

- The source code is not open source and is still being developed by the creator and
trusted people [43].

- The community is small and is not popular amongst developers [44].
- Most of the tutorials are outdated, and the documentation is incomplete [43].

 4 Selection Phase

28

React

React, also known as ReactJS, is a JavaScript library for building User Interface (UI)
specifically for single-page applications. React was first created by Jordan Walke, a software
engineer working for Facebook and Facebook's newsfeed, in 2011 [45]. Facebook released
React as an open-source framework in 2013 and is still being developed and maintained by
Facebook. Since the release date, React has become one of the tops loved and wanted
frameworks by developers due to its focus on user experience and development simplicity.
[46]. React has both advantages and disadvantages, and they are:

Advantages:

- Easy to Learn: Anyone with a basic understanding of HTML and JavaScript can
quickly startup developing with React. This is also the reason behind React is popular
than other JavaScript libraries and frameworks. [47]

- Components-based architecture: React components that can be independently created,
maintained, and reused. This gives the ability to have multiple components inside the
same web page who work independently. [47]

- Large community: React has had a rapid and is still a growing community. [46]
- Helpful tools: React Developer Tools is an extension to Google Chrome and Mozilla

Firefox, making it easier to check the code when tested. [46]

Disadvantages:

- The high pace of development: React is constantly evolving and changing, which can
be seen as both negative and positive. In the negative senses, one has to relearn how
React works constantly, and it may be challenging to keep up with all the changes.
[48]

- Lack of proper documentation: As a result of the high pace of development of React,
the documentation is not always been up to date on the newest version. [48]

4.6.3 Choice
The choice has fallen upon React to create the frontend. The arguments are:

- Use JavaScript as the programming language, which is the most popular and used.
- It has the highest likelihood of being known by other developers.
- It is easy to learn if JavaScript is known.
- The documentation is the most updated and in English compared with the other

alternatives.
- It is known to a developer at Inovyn.

The latest version with complete documentation of React was selected and was version
16.14.0.

 4 Selection Phase

29

4.7 Server-side programming language
The programming language for the server-side is responsible for interacting with other
applications and databases. The three most prominent programming languages for server-side
are C#, Java, and Python. Java and C# are relatively equal, while Python differs more from
them. Table 4.1 presents factors for each programming language and two unique factors for
Ineos Rafnes and Inovyn [49] [50] [51] [28].

Table 4.1 factors for each programming language and two unique factors for Ineos Rafnes and Inovyn.

 Java C# Python

Used by Professional

Developers
38.4% 32,3% 41,6%

Liked by developers 44,1% 59,7% 66,7%

Supported by Oracle Mircosoft Community

Used for creating
Android apps, large

websites

Windows apps, large

websites (Unity games)

Math scripts,

websites

Used especially by
Large companies (Banks,

eCommerce, Google, etc.)

Large companies
(Microsoft, healthcare, etc.)

Academics,

startups, Google

Top Web Framework Spring MVC ASP.NET MVC Django

Performance Compiled Compiled Interpreted

Variable usage Strongly Typed Strongly Typed Dynamic-typed

Difficulty level Easy to moderate Easy to moderate Easy

Compliant with react Yes Yes Yes

Deployed with ISS Yes Yes Yes

Used by employees at

Ineos and Inovyn
No Yes No

Procedure for data

extraction from UPHD
No Yes No

C# been selected as the programming language. The two last rows of the table give the main
reasons. In addition, both Ineos Rafnes and Inovyn uses mainly products from Microsoft or
integrated with Windows OS.

 4 Selection Phase

30

4.7.1 Framework
The chosen framework for C# is ASP.NET, the only framework for web development. In
addition, there are two platforms to choose from for ASP.NET. the platforms are .NET Core
and .NET Framework. Table 4.2 gives essential arguments for and against both NET Core
and .NET Framework [54].

Table 4.2 arguments for and against both NET Core and .NET Framework.

A high-performance and scalable system without UI .NET Core is much faster.

Docker containers support
Both, but .NET Core is born to live
in a container.

Heavily rely on the command line .NET Core has better support.
Cross-platform needs .NET Core

Using Microservices
Both, but .NET Core is designed to
keep today's needs in mind.

User interface centric Web applications
.NET Framework is better now until
.NET Core catches up.

Windows client applications using Windows Forms
and WPF

.NET Framework

Already have a pre-configured environment and
systems

.NET Framework is better.

Stable version for an immediate need to build and
deploy

.NET Framework has been around
since 2001. .NET Core is just a baby.

Have existing experienced .NET team .NET Core has a learning curve.
Time is not a problem. Experiments are acceptable.
No rush to deployment.

.NET Core is the future of .NET.

The platform has been selected to .NET Core because it is faster, better support, and the
future of .Net. The latest version of ASP.NET with .NET Core is ASP.NET Core 5.0 and is
selected.

4.8 Interface
The interaction between the React and ASP.NET Core is set to the default APIs. React has an
inbuilt standard API library. The ASP.NET Core is the ASP.NET Core MVC for Web API.
The protocol between them is HTTP with format JavaScript Object Notation (JSON). The
argument for choosing this interface is that it is updated simultaneously when the version of
the framework or library is updated.

4.9 Development tools
For creating, writing, test, compile, debug, and publish the code, an Integrated Development
Environment (IDE) is needed [53]. For C#, the natural choice fell on Visual Studio 2019 as
the IDE. Visual Studio 2019 has the possibility for creating, compile, test, debug, and publish
C# code. [54] Furthermore, a version control tool is needed for storing and handle the C#
code. For this purpose, GitHub was selected.

 4 Selection Phase

31

React can be created, compile, test, and publish by Visual Studio 2019, but it is not suited to
write and debug the code. Visual Studio Code was chosen for writing code. Visual Studio
Code is a code editor that can import libraries for types of frameworks and libraries to
highlight that code is written correctly. [55] For debug purposes, Google Chrome was
selected. Hence, it can write out error messages, and it has an inbuilt console application
where it is possible to log statements. As Visual Studio 2019 was used for creating it, GitHub
was selected as the version control.

The Web API’s has been tested with software called Postman. The purpose of Postman is to
send HTTP messages to see the response. [56]

The API DLL for UPHD has been view with Jetbrains Dotpeek. Jetbrains Dotpeek is
software that can decompile DLL files. [57]

The current metering report application has been viewed with Note++.

4.10 Changes
The selected framework .Net Core, and version of the Phdapinet had unforeseen issues. The
two main issues were utilizing the Phdapinet.dll with .NET Core and communication with
UPHD with the Phdapinet version 400.1.

4.10.1 Utilize the Phdapinet
The first issue to arise was to utilize the Phdapinet. The .NET Core was not able to utilize the
Phdapinet, but the .NET Framework was able. There were some alternatives to solve this
issue, and the alternatives were:

1. Change the whole web application to .Net Framework.
2. Split the application into two parts, with two different frameworks.
3. Create a new project .Net Framework inside the same project and pass the data

between two applications.

Each of the alternatives has their advantage and disadvantage. Table 4.3 shows the advantage
and disadvantages of the alternatives.

Table 4.3 the advantage and disadvantages of the alternatives.

Alternatives 1 alternatives 2 alternatives 3
Advantage One

application
Separate the application into two
independent projects

One application

Frontend is cross-platform Fully Cross-platform
It makes the applications more open to
being used by other applications and
changeout

Disadvantage Older version Two applications Higher update
frequency on imported
libraries

 4 Selection Phase

32

It can only run
on Windows
OS

The backend requires Windows OS It makes the application
more complex

The selected alternative was to split the application into two parts, with two types of
frameworks. The reason for selecting this alternative is the uncertainty of what is required for
implementing the new database to Inovyn. Hence, having two applications increases the
chance to handle the implementation and keeping one part as new as possible.

The selected alternative has been created to a different version where the frontend is .Net
Core with ASP.NET Core 5.0, while the backend is .Net framework version 4.6.1 with
ASP.NET Core 2.1.

4.10.2 Communication with UPHD
The second issue to arise was communication with UPHD. The Phdapinet version 400.1 was
able to request data but was not allowed to send back data to the UPHD. To clarify what the
issue was, Honeywell was contacted. A Honeywell expert on the UPHD informed that they
had some issues with version 400.1. When a computer has installed Uniformans Processes
Historian Database Client 321.212 tries to use version 400.1 of the Phdapinet. Honeywell
recommended using version 321.21 because it worked with all the versions of a UPHD.

2 A software module belonging to Unifromance Process Studio for displaying data from UPHD by Honeywell.

 5 Design

33

5 Design
The custom-made solution of a new Metering Report has had a preliminary design as the
development processes evolved. It has been serval prototype for a new Metering Report
custom-made solution, but most have kept the design.

5.1 System
The system is a web server, and the given name is NoRafDev03. NoRafDev03 had to
reachable for the user at Inovyn and Ineos Rafnes and connect to both UPHDs. Figure 5.1
shows an overview of the system. The web server is set to only be reachable on the intranet
as a safety precaution. The intranet is divided into levels, and the level NoRafDev03 operates
on is level 4.0. Level 4.0 is the business or office level of the intranet.

NoRafDev03

PHD UPS_RAF

PHD UPS_RAF2

Users Inoes Rafnes

User Inovyn
Figure 5.1 System overview

5.2 Architecture
The Architecture of the web application has been selected to a two-layer application. This
separated the frontend and the backend as two independent development, with an interface
between them for data exchange. The arguments for the two-layer structure of the web
application are to make each part's maintenance more uncomplicated and the possibility for
changing out one of the parts. Figure 5.2 shows the architecture of the two layers with the
underlying structure of each of them.

 5 Design

34

Client Layer/User Interface/Frontend Server Layer/Business Layer/Backend

UI with data-
binding

Web API service
layer for read

and write
actions

Business Logic
layer

Data access
layer

Database

UPS_RAF

UPS_RAF2

Client-side data
model and

asynchronous
operations

Figure 5.2 overview of the principal structure of a custom-made solution.

The client layer consists of two parts, UI and code-behind. The UI task is to let the user
interact with the system. The code behind is all predefined structures, operations, and data
exchange based on the user input.

The server layer has been selected into three parts, Web APIs, Business logic, and data
access. Web APIs are the entrance for the frontend to pass and get data. The Business logic is
the code for determining how data is created, stored, and changed. The Data access layer
handles the interaction against the databases.

5.3 Use cases
The requirements of a new custom-made solution have been set to use cases. Figure 5.3
shows the use cases with actors. Each of the use cases has been interpreted for creating the
web application.

Figure 5.3 use case diagram of the web application.

5.4 Design patterns
It has been used in design patterns to create the structure of the web application. The design
patterns are from General Responsibility Assignment Software Patterns (GRASP) and Gang
of Four (GoF) [10, pp. 173-175]. Table 5.1 and Table 5.2 shows the used design patterns for
the web application.

Table 5.1 used design patterns from GRASP.

GRASP patterns overview

 5 Design

35

Name Problem Solution

Controller
Starting point of the
application or use case,
what controls the use-case?

Assign the responsibility to an object who: 1.
represent the overall system (root object), 2.
represent (control execution of) the use-case.

Information
Expert

Which object is responsible
of knowing the specific
information?

Assign the responsibility of knowing to the class
holding that information.

Creator Which object creates
another object?

Assign the responsibility of creation an object to:
1: Another object who contains it, 2: Another
object who records it, 3: Another object who uses
it (closely, meaning a lot), 4. Another object who
knows the initialization parameters of it.

Low Coupling How to reduce the impact
of changes in the code?

Avoid back and forth messages, one way
communication between objects. Minimum
interaction/knowledge /dependency between
objects, tree structure.

High Cohesion
How to keep objects
focused, understandable,
manageable?

Objects should be focused about the contained
task and not have multiple responsibilities, unless
they belong together (tasks closely related),
Contain related functions in only one object,
never store data in different locations, Objects
should cooperate to solve the overall task, but be
responsible for their own part, assign
responsibilities to suitable objects, or create new
classes if no suitable object exists.

Polymorphism

How to handle methods
with different types of
variables but same
function?

Use polymorphism overloads, and keep the
function code only one place.

Table 5.2 used design patterns from GoF.

GoF patterns overview
Name Problem Solution

Singleton
How to implement a class when
only one instance of the class
should exist?

Use a static method to return the instance and
make constructor private so it is impossible to
create multiple objects of the class.

Strategy
How to design for varying (able to
change), but related,
algorithms/policies?

Define each algorithm/policy/strategy in a
separate class with a common interface

Facade
How to avoid multiple connections
between multiple objects between
subsystems or an application?

Define a single point (or a few) of contact
between subsystems/layers, as interface
objects or wrapper objects.

 5 Design

36

5.5 UI design
The UI design has aimed to create a simplistic and intuitive website. It has been chosen to
have a header, footer, content, and a sidebar to change the content if needed. The color
resolution for the UI was elected to be light colors and colors matching the logo of Ineos
Rafnes or Inovyn. It has been attempted to selecting components for user input commonly
seen in other applications to make it intuitive.

5.6 First draft
A first draft of the application was created based on the requirements. Figure 5.4 shows the
first draft of the classes for the use cases inserted into the architecture. The first draft has been
used as the foundation as the development has moved forward. The cycles of the web
application start with user input triggers an event that loops through the system to return the
desired operation based on the user input.

DatabasesWeb API service layer Business Logic layer Data access layer

UPS_RAF

UPS_RAF2

Client-side layer

Front

Month Report

Login

Month Report

Year Report
Year Report

Register Measurement

Login

Register Measurement

Get Month Report

Set Month Report

Get Year Report

Get Registered Measurement

Register Measurement

UPHD Interface

Filter

Figure 5.4 the first draft of the classes for the use cases inserted into the architecture.

The principal idea is that each use case starts at the UI. The client-side sends either a request
for getting or setting data to the Web API. As the Web API contains two functions, it has
been split into a function for each. These functions are the business logic, which controls the
use case. The UPHD interface is responsible for handling data from and to the two UPHD.

5.7 Development plan
It was made a development plan to have a course for the prototype. The plan was created
concerning the use cases and the users. Figure 5.5 shows a block diagram of the plan for each
part of the web application. The idea was to start with the UI to get the users interested in the
development and then implement one after one of the use cases.

Create the layout of
the UI with

Add login feature
Add monthly

reports
Add yearly reports

Add manual
registration

Add update of
monthly report

Figure 5.5 a block diagram the plan of each part of web application.

 5 Design

37

The Scrum method of sprint was planned to be utilized with a new version of the prototype
each 14 day until the project was finish. Figure 5.6 shows a block diagram of the planned first
sprints and the iteration of the sprits for the project.

Develop first version of
the prototype based on

the design

Deploy version first of
the prototype

Develop the next version
of the prototype with

regrades on feedback
and design

Deploy the next version
of the prototype

Figure 5.6 a block diagram of the planned first sprints and the iteration of the sprits for the project.

 6 Prototype

38

6 Prototype
The current prototype of a custom-made solution for a new metering system has been made
from the requirement. The prototype runs on a server at Ineos Rafnes and is accessible to
anyone connected to the intranet. Figure 6.1 shows the front page of the prototype.

Figure 6.1 Front page of the prototype.

6.1 Get a monthly report
The monthly report page can be reached by clicking the "Perioderapporter" link on the
navigation bar. All the types of monthly reports are inside the side menu. The side menu for
monthly reports is divided into Ineos Rafnes and Inovyn, with the monthly reports belonging
to each of them. Figure 6.2 shows the start points for selecting a monthly report. When a
monthly report is selected for the first time, the time interval is set to the current year and
month. Figure 6.3 shows the monthly report "Pyrolyseolje" when it is chosen as the first
monthly report. When a monthly report has been selected and displayed, it is possible to
change the time interval. The time interval may be chosen between January 2005 and the
present time. Figure 6.4 shows the monthly report of "Returkondensat" at a select time
interval of February 2005.

 6 Prototype

39

Figure 6.2 start points for selecting a monthly report.

Figure 6.3 the monthly report of "Pyrolyseolje."

Figure 6.4 the monthly report of "Returkondensat" at a select time interval of February 2005.

 6 Prototype

40

6.2 Update a monthly report
The desired monthly report needs to be displayed to be able to update it. The verification
menu is opened by clicking the desired date to update. Figure 6.5 shows how the verification
menu looks for "Matevann." The number at the same line as a name holding "Korreksjon"
can change the number. It is possible to write a comment in the field next to "Kommentar."
The "Verifiser" button has to click to send the updated values, and the verification menu will
close. To close the verification menu without updating values, click the "X" or any place in
the gray area.

Figure 6.5 the verification menu for "Matevann."

6.3 Check stored values
A new feature check stored values have been added to the prototype. The origin of check
stored values comes from feedback on the prototype. The purpose is to display all raw values
stored inside both UPHDs for a report. At the bottom of each monthly report, there is a button
"Se databasen." A table with all the raw values with corresponding timestamps for the
selected month report is shown by clicking the button. Navigation back to the monthly report
is by clicking the button "Se rapporten." Figure 6.6 shows the table presented with all raw
values stored inside both UPHD for "Fabrikkluft."

 6 Prototype

41

Figure 6.6 the table presented with all raw values stored inside both UPHD for "Fabrikkluft."

6.4 Get a yearly report
The yearly report page is accessed by clicking the "Årsrapporter" link on the navigation bar.
All the types of yearly reports are inside the side menu. The side menu for yearly reports is
divided into Ineos Rafnes and Inovyn, with the year reports belonging to each of them. When
a yearly report is selected from the side menu, a year selection menu appears. Figure 6.7
shows the side menu and time selection menu of a year report. Inside the year selection menu,
it is possible to select yearly reports between 2005 and the present year. The button "Hent
rapport" needs to be clicked to display the yearly report selected year. Figure 6.8 shows the
yearly report of "Etylen" for 2021.

Figure 6.7 the side menu and time selection menu of a yearly report

 6 Prototype

42

Figure 6.8 the yearly report of "Etylen" for 2021

6.5 Manual registration
The manual registration page is accessed by clicking the "Manuell registreing" link on the
navigation bar. All the types of manual registration are inside the side menu. When a manual
registration is selected from the side menu, the operation interface is displayed. Both the
registered values and the calculated values are displayed for the current month. If the last
registration happened longer ago than a month, the last value registered is presented. The
registration interface is placed below the table of registered values. To register a new value, a
date and a value need to be inserted, and click the button "Oppdater telleverksverdi." Then
both tables are refreshes with corresponding values. Figure 6.9 the manual registration page
of “Damp.”

There are two possible registration scenarios:

- Register a new value of a new date
- Change the current registration

When either of the scenarios happens, the application recalculates the calculated values. The
calculation is display as the user enter values or changes the date. The limitations for the user
is:

- Not possible to enter a date before the last registration.
- Not possible to enter a lower value or higher than two times the currently registered

value

If the last limitation is valid, the displayed calculation is mark red. Figure 6.10 shows the
indication of a value outside of limitation in the registration interface.

 6 Prototype

43

Figure 6.9 the manual registration page of “Damp.”

Figure 6.10 shows the indication of a value outside of limitation in the registration interface.

6.6 Login
The login page is accessed by clicking the "Innlogging" link on the navigation bar. It is
possible to log in and out, but no extra privilege is given regarding available functionality.
All functionality has been set available without requiring to log in test it. The reason is to
enable the users to test as much as possible. The current username is "qwerty," and the
password is "Rafnes2020". Figure 6.11 shows the login in page.

 6 Prototype

44

Figure 6.11 the login in page.

 7 Frontend

45

7 Frontend
The developed Frontend is C# application with React implemented. Programming languages
used in the React application of the client-side are JavaScript, HTML, and CSS. The React
application is booted up with C# application on the webserver.

7.1 React
The React part holds only one Html page that is initialized by the C# application. This is the
reason why it is called a SPA (Single Page Application). The index page only actives a
JavaScript file called index. All the rest of the scripts are nested into the JavaScript index.

All code-written scripts in React are defined as components. A component is either a function
or a class. The difference between a class and a function is that the class can hold values.
Stored values inside a component are referred to as a state. A component is primarily built up
of JavaScript and HTML code. It is possible to use CSS directly into the code of a component
or refer to a CSS file to style a component.

The React has a life cycle concept. The code running has a life cycle for performing different
operations. The life cycle for React is the following:

- Initialization happens when a component is called for the first time.
- Mounting is when the new content is presented.
- Updating occurs when an event is triggered.
- Unmounting is clearing out the component.

Figure 7.1 shows the overview of the React life cycles and the different functions for each of
the life cycles [58]. In mounting and updating, there are two types of operation. Presenting in
the browser is referred to ReactDOM methods, and performing tasks in the background are
referred to React methods.

Figure 7.1 Overview of the React framework life cycles [58].

 7 Frontend

46

7.2 The structure
The React part has been given a straightforward structure. Figure 7.2 shows the structure
from the Html index file and all the components. All the components are constructed as
classes, except the Footer, which is a function.

Layout.js

Navbar.js

Footer.js

App.jsIndex.html

Periodic.js

Yearly.js

Register.js

Login.js

Frontpage.js

Info.js

Index.js

Figure 7.2 the structure from the Html index file and all the components

The layout of the React part can be separated into static and changeable components. The
static components are initialized upon startup and unmounted when closing the web page. In
contrast, the changeable components can be swapped in and out while the application is
running. The changeable components are Frontpage, Periodic, Yearly, Register, Login, and
Info. Each of the changeable components has a unique extension added to the URL, so it is
possible to bookmark them in a browser. The first time the web page is loaded into a browser,
it returns the Frontpage as default. Figure 7.3 shows the nested structure of the Frontpage.

Index.html

Index.js

App.js

Layout.js

Navbar.js

Frontpage.js

Footer.js

Figure 7.3 the nested structure of the Frontpage.

7.3 Navigation
The navigation between the components is set to component "Navbar.js" which contains the
navigation bar. Navigating between the components is done by clicking the names or the icon
on the navigation bar. When a name or icon is selected and is not the displayed component,

 7 Frontend

47

the current component is swapped out. This process is controlled by the "App.js" and happen
in the following order:

1. The navigation bar update the state of which component shall be displayed in App.js
2. App sends dismount to the current component
3. App sends initialize to the new component
4. When the new component renders, the app sends it to the Index.js
5. Index.js updates the index.html

Figure 7.4 Displays the swapping between the components "Frontpage.js" and "info.js."

Layout.js

Navbar.js

Footer.js

App.jsIndex.html

Periodic.js

Yearly.js

Register.js

Login.js

Frontpage.js

Info.js

Index.js 2

1

3

45

Figure 7.4 Displays the swapping between the components "Frontpage.js" and "info.js."

7.4 Functions
Some of the functions developed are reused in several of the classes. The functions used in
more than one component are side menu, fetch, and presenting data in a table.

7.4.1 Side menu
The components yearly, periodic, and register, has a side menu. The setup for the side menu
is the same structure. The purpose of the side menu is for the user to select the desired view3.
Whenever a user clicks the link for the desired view, the side menu triggers an event to get
the content and presents it. Each of the links contains the id for the request view. The side
menu is categorized into the different sites responsible for yearly and monthly reports, with a
category for each report. The side menu for registration displays all the different possible
registration options directly.

7.4.2 Fetch
The communication with the backend is handled through the standard React API library. The
protocol is JSON with HTTP. The code either asks for data or sends data, and the command

3 The view can be a report or a manual registration.

 7 Frontend

48

for the communication is fetch. The components yearly, periodic, and register, has an
implementation of the fetch.

To show how it is implemented into the web application, an example of how it works is Feed
Water's monthly report. The user desires to see the monthly report for Feed Water and clicks
the "Matevann" link in the side menu. It triggers the fetch and sends out a request to the
backend as (web API). The request is http://172.24.22.87:5540/api/monthreport/9/2021/05/.
Then the backend replays with appropriate information.

Table 7.1 shows how the HTTP request is built up. The frontend sets the ID, year, and month
dependent upon the user input, while the rest is set as default. When a user selects a report for
the first time, the frontend sets the present time for the HTTP request.

Table 7.1 HTTP request setup

Protocol IP Port Route Controller ID Year Month

http 172.24.22.87 5540 api monthreport 9 2021 5

7.4.3 Presenting table with data
The presentation of data in a table from the backend is a function used by the year reports,
periodic reports, actual measurement, and manual registration. The data object received from
the backend is a JSON object that is constructed as a matrix.

The matrix for both the year reports and periodic reports is designed as shown in equation
7.1. The information in the equation is an array containing the parameters of fix setup and is
shown in equation 7.2 with an explanation of abbreviation in Table 7.2. The matrix is divided
into three parts. The first part is the information that utilizes the coloring of the columns. The
name and unit are set directly into the table as table headers. The last part is all values for the
table. The values are flipped from rows to columns before they are inserted into the table.

⎣
⎢
⎢
⎢
⎢
⎡

𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛
𝑛𝑎𝑚𝑒ଵ … 𝑛𝑎𝑚𝑒

𝑢𝑛𝑖𝑡ଵ … 𝑢𝑛𝑖𝑡

𝑣𝑎𝑙𝑢𝑒ଵଵ … 𝑣𝑎𝑙𝑢𝑒ଵ

⋮ ⋱ ⋮
𝑣𝑎𝑙𝑢𝑒ଵ … 𝑣𝑎𝑙𝑢𝑒⎦

⎥
⎥
⎥
⎥
⎤

 (7.1)

[𝑁𝑣𝑣 𝑁𝑣𝑐 𝑁𝑑𝑐 𝑃𝑣𝑐ଵ … 𝑃𝑣𝑐 𝑁𝑑𝑐ଵ … 𝑁𝑑𝑐 𝐷𝑣] (7.2)

Table 7.2 abbreviation explanation of equation 7.2.

Abbreviation Description Type

Nvv Number of verified values Integer

Nvc Number of verified columns Integer

Ndc Number of difference columns Integer

Pvc Position of verified column Integer

 7 Frontend

49

Ndc Position of difference column Integer

Dv Difference value Integer

The matrix for the actual measurement and the manual registration table is designed as shown
in equation 7.3. The matrix is divided into two parts. The name and unit are set directly into
the table as table headers. The last part is all values for the table. The values are flipped from
rows to columns before they are inserted into the table.

⎣
⎢
⎢
⎢
⎡

𝑛𝑎𝑚𝑒ଵ … 𝑛𝑎𝑚𝑒

𝑢𝑛𝑖𝑡ଵ … 𝑢𝑛𝑖𝑡

𝑣𝑎𝑙𝑢𝑒ଵଵ … 𝑣𝑎𝑙𝑢𝑒ଵ

⋮ ⋱ ⋮
𝑣𝑎𝑙𝑢𝑒ଵ … 𝑣𝑎𝑙𝑢𝑒⎦

⎥
⎥
⎥
⎤

 (7.3)

7.5 Components
The components for the use cases have been created with a life cycle based upon the user
input. The components of this life cycle are the monthly report, yearly report, manual
registration, and log in.

7.5.1 Monthly report
The monthly report is named Periodic.js in the application. Periodic.js is a class component
that handles the two use cases, gets a monthly report, and updates a monthly report. In
addition, Periodic.js holds the actual measurement of a month. Figure 7.5 shows the flow
diagram of how Periodic.js handles user input for presentation data to the user. Figure 7.6
shows the flow diagram of handling update values in a monthly report.

 7 Frontend

50

Periodic Reports
initialize

Mount: header
and side menu

User select the
first periodic

report

Update: fetch data for the
periodic report and actual

values at present time

Periodic report
Data ok

Update: year and month
selection, button for actual

values

Update: year and month
selection, periodic report,
button for actual values

User change time
interval and click

fetch reoprt

User select
another periodic

report
User select the
actual values

Update: fetch data for the
periodic report and actual

values at time interval of year
and month selection

Actual values
Data ok

Update: year and month
selection, button for

periodic report

Update: year and month
selection, button for periodic

report, actual values

Yes

No

Yes

No

Periodic report or
actual values

Actual values Periodic report

Figure 7.5 the flow diagram of how Periodic.js handles user input for presentation data to the user.

Monthly report is displayed
and user click on a date

Update: verification
is displayed

User may enter
comment, correction

values

User click verify Update: sends the
values, and refresh,

closes the
verification menu,
the monthly report

User click in gray area or the x

Update: closes the
verification menu

Monthly report is
displayed

Figure 7.6 the flow diagram of handling update values a monthly report.

 7 Frontend

51

7.5.2 Yearly report
The yearly report is named Yearly.js in the application. Yearly.js is a class component that
handles the use cases get a yearly report. Figure 7.7 shows the flow diagram of getting a
yearly report.

Yearly Reports
initialize

Mount: header
and side menu

User select the first
yearly report

Yearly report
data ok

Update: Heading
Update: Heading and

yearly report

yes

no

Update: year selection of
yearly report

User select the
another yearly

report

User select the time
interval of the yearly
report and click fetch

Figure 7.7 the flow diagram of the getting a yearly report.

7.5.3 Manual registration
The manual registration is named Registry.js in the application. Registry.js is a class
component that handles the use cases a manual registration. Figure 7.7 shows the flow
diagram of the manual registration.

Manual registration
initialize

Mount: header
and side menu

User select
measurement

Update: fetch data
measurement tag and the
calculated tag at present

time

 Data okUpdate: headers

Update: headers, table
for Measurement tag,

table for calculated tag,
menu for enter values

User select another
measurement

No

Yes

Data accepted
Yes

No

User update
measurement

Figure 7.8 the flow diagram of the manual registration.

 7 Frontend

52

7.5.4 Login
The Login is named login.js in the application. Login.js is a class component that handles the
use cases get a login. Figure 7.7 shows the flow diagram of the login.

Login initialize

Mount: login menu
User may enter
username and

passord

User click login
Update: checks the

username and
password

Update: display
header and log out

button

Correct

Update: login menu
User click log

out button

Incorrect

Figure 7.9 the flow diagram of the login.

 8 Developed Backend

53

8 Developed Backend
The backend is a Web API application integrated with the UPHD. The application tasks
handle interaction with UPHD, perform the use cases, and send the data on request. The
given application name is API_PHD_NET_Framework.

8.1 Structure
The application is structured into a folder containing subfolders as the layers. Figure 8.1
Show a diagram of the folder containing subfolders of the application and some of the files.
In addition, there is a line between some of the folders and files to indicate the connection
between them. Most of the presented files are classes inside the application. The folder
represents a part of the application and are:

- Program and startup are the roots of the application
- The controller is the Web API service layer.
- Model is the business logic layer.
- PHD is the data access layer for UPHD.
- The parameter is the predefined values of the application.
- The library is the storage of needed DLL.
- IP21 is the data access layer for IP21.

AllMeasurementOfAMonth

MonthReportController

RegistryController

YearReportController

MonthReport

YearlyReport

ManuallyRecords

MeasurementOfAMonth

SetRecords

PHDtransmission

Filtrate

TimeVariable

Network.dll

phdapi.dll

phdknl.dll

phdrapi.dll

PHDSecurity.dll

Empty

GetMonthReport

GetAllMeasurementOfAMonth

GetManuallyRecords

SetManuallyRecords

SetMonthReport

GetYearlyReport

Calculate

Startup

Program

TimeValues

Figure 8.1diagram of the folder containing subfolders of the application and some of the files.

Program and startup

 8 Developed Backend

54

The program is a class and the root of the application that launches the application. The
program initializes the startup class. The startup class sets the application settings and enables
the Web API services layer to be activated for requests.

Web API service layer

The Web API service layer is the application interface for other parties, where HTTP request
is sent to the application. The Web API service layer is located inside the folder controller,
where four classes represent the start for five of the use cases. Each of the classes is created
with the same design patterns. The design patterns are Controller, Creator, and Low
Coupling. The classes have either one or two functions, an HTTP get and an HTTP post
function.

Business logic layer

The Business logic layer is where the logic for converting data either from UPHD to report or
decoding incoming data to be set in UPHD. The business logic layer is located inside the
folder model, which is the logic for five use cases. There are six classes responsible for
handling the use cases, while the Calculation and Time Values are support classes. The
design patterns for the six classes performing the use cases are High Cohesion, Controller,
Strategy. The Calculations class has the design patterns Polymorphism and Singleton, and the
Time Value has Singleton.

Data access layer

The Data access layer is the interface against databases. Currently, there are two folders, one
for UPHD and IP21. The folder for IP21 is empty at the moment. The folder PHD contains
three classes. PHD transmissions, Filter, and Time Variables. The PHD transmissions class is
created with the design patterns Facade, High Cohesion, and Information Expert. The filter
and Time Variables are design patterns Low Coupling and Singleton.

Parameter

The parameter folder contains static classes with the specific information of each report. Each
of the classes is based on Low Coupling, Singleton, and Information Expert.

Library

The library folder contains all the needed DLL for the application. This folder holds all the
DLL that is used in one place. When the application is published, these DLLs need to be
copied into the published application.

 8 Developed Backend

55

8.2 Operations
The principal design idea has been kept and extended for performing the operations for the
use cases and a new function. The operations of the application are divided into these:

- Get a yearly report
- Get a monthly report
- Set update values
- Get all measurement of a month
- Get registered and calculated records
- Set registered and calculate records

Instead of explaining each of them, a block diagram is representing each of them. The
number indicates the order of the loop between each of the elements for performing its task.
The block UI represents a request, and PHD represents both UPHD.

Get a yearly report

The use case of returning a yearly report is an 18 steps loop and starts with an HTTP get
request with the last part in order controller name, identification number, and year. Figure 8.2
shows a block diagram of the loop for returning a yearly report upon a valid HTTP request.
The returned yearly report is an object in JSON format containing the data.

UI
1.

18. YearReport GetYearReport

Calculations

YearReport-
Parameters

TimeVaribale

2.

17.

3.4.

14.13.16.15.

PHDTransmissons

Filter

10.11.

TimeParameters

6.7.

5.

12. PHD
8.

9.

Figure 8.2 block diagram of the loop for returning a yearly report upon a valid HTTP request.

Get a monthly report

The use case of returning a monthly report is an 18 steps loop and starts with an HTTP get
request with the last part in order controller name, identification number, year, and month.
Figure 8.2 shows a block diagram of the loop for returning a monthly report upon a valid
HTTP request. The returned monthly report is an object in JSON format containing the data.

 8 Developed Backend

56

UI
1.

18. MonthReport GetMonthReport

Calculations

MonthReport-
Parameters

TimeVaribale

2.

17.

3.4.

14.13.16.15.

PHDTransmissons

Filter

10.11.

TimeParameters

7.6.

5.

12. PHD
8.

9.

Figure 8.3 block diagram of the loop for returning a monthly report upon a valid HTTP request.

Set update values

The use case of set update values is an 11 steps loop and starts with an HTTP put request
with the last part in order controller name and an objected of data in JSON format. Figure 8.4
shows a block diagram of the loop for set update values upon a valid HTTP request. The
returned value is OK or BAD.

UI
1.

11. MonthReport SetMonthReport

Calculations

MonthReport-
Parameters

2.

10.

3.4.

PHDTransmissons
7.

9. PHD
8.

5.6.

Figure 8.4 block diagram of the loop for set update values upon a valid HTTP request.

Get all measurements of a month

The new feature of getting all measurements of a month is a 14 steps loop and starts with an
HTTP get request with the last part in order controller name, identification number, year, and
month. Figure 8.5 shows a block diagram of the loop for getting all measurements of a month
upon a valid HTTP request. It returns all measurements of a month as an object in JSON
format containing the data.

 8 Developed Backend

57

UI
1.

14.
AllMeasurement

-OfAMonth
GetAllMeasurement

-OfAMonth

AllMeasurement-
OfAMonth-
Parameters

2.

13.

3.4.

PHDTransmissons

Filter

10.11.

TimeParameters

7.6.

5.

12. PHD
8.

9.

Figure 8.5 block diagram of the loop for getting all measurements of a month upon a valid HTTP request.

Get registered and calculated records

The use case manual registration is divided into two parts. The first part is getting registered
and calculated records and is a14 steps loop and starts with an HTTP get request with the last
part in order controller name, identification number. Figure 8.6Figure 8.2 shows a block
diagram of the loop for returning either registered or calculated records upon a valid HTTP
request. The returned registered and calculated records is an object in JSON format
containing the data.

UI
1.

14.
Manually-
Records

GetManually-
Records

ManuallyRecords-
Parameters

2.

13.

3.4.

PHDTransmissons

Filter

10.11.

TimeParameters

7.6.

5.

12. PHD
8.

9.

Figure 8.6 block diagram of the loop for returning either registered or calculated records upon a valid HTTP

request.

Set registered and calculate records

The second part of the use case manual registration is a ten steps loop and starts with an
HTTP put request with the last part in order controller name, and an objected of data in JSON
format. Figure 8.7 shows a block diagram of the loop for setting either a registered or
calculated record upon a valid HTTP request. The returned value is OK or BAD.

 8 Developed Backend

58

UI
1.

10.
Manually-
Records

SetManually-
Records

ManuallyRecords-
Parameters

2.

9.

3.4.

PHDTransmissons
5.

8. PHD
6.

7.

Figure 8.7 block diagram of the loop for setting either a registered or a calculated record upon a valid HTTP

request

8.3 Functionality descriptions
The application's functionality is to have one unique entry point for each task to be
performed. From this entry point, an object is created for handling the operation. Each type of
operation has a unique class that fits the operation for all equal action. This class aims to
perform the use case and controls the order of tasks and flow of data between different
objects and static classes, with one exception. The exception is that the class that interacts
with UPHD has its static classes for filtering and time intervals purposes. Upon successful or
failed execution, the application returns a replay.

8.3.1 Access Layer
As mentioned earlier, each class holds either one or two functions and is now referred to as
operations. The Month Report Controller and Registry Controller have two operations, while
the others have one. The operation all classes have is getting a report

The operation for getting a report is built up correspondingly for each of them inside the
access layer. When the operation is called upon, it creates an object and starts a function
inside the object for getting an object list from the corresponding get-class in the business
logic layer. On receiving the object list from the function, the operation sends it out.

The operation for posting is unique for each Month Report Controller and Registry
Controller. The difference between them is that Registry Controller sets variables directly,
while the Month Report Controller sets arrays directly to its corresponding set-class. Then
operation activates the function to insert in the set-class. The operation either sends an HTTP
status of 200 (OK) on success or an HTTP status of 400 (BAD) on failure. . An example of
the function code for the Registry Controller is given in Appendix E.

 8 Developed Backend

59

8.3.2 Business layer
The business layer can be divided into four parts: get-classes, set-classes, calculations, and
Time Values. The get-classes and set-classes performing the use cases are built upon the
same principle. The principle is that each of them requires identification and has one public
function that can be enabled. The Calculation and Time Value classes are static and have
reusable functions for the get- and set-classes.

Get-classes

The get-classes are created on the same idea, but they vary from each other due to the task
they shall perform. Figure 8.8 Shows a simplified diagram for the process to get a monthly
report or yearly report. Figure 8.9 Shows a simplified diagram for the process to get all
measurements of a month. Figure 8.10 Shows a simplified diagram for the process to the get
registered records. An example of the primary function code for getting a monthly report is
given in Appendix E.

Start

Gets parameters (tag,
names, unit,

parameter, difference
value, calculations,

and tag to calculate)
based on ID

Gets data from
UPHD based on

tag, parameter and
date

Checks the data
from UPHD

Calculates the
values based on
calculations and
tag to calculate,
insert them into

object list

Creates the
information based
on the name and
unit and insert it
into object list

Insert the given
dates, names, and
unit into the object

list

Returns the object
list

Sets id and date

End

Figure 8.8 a simplified diagram for the process to get a monthly report or yearly report.

Start

Gets parameters
(tag, names, unit
and parameter)

based on ID

Gets data from
UPHD based on

tag, parameter and
date

Insert the given
dates, names, and

unit, and values
into the object list

Returns the object
list

Sets id and date End

Figure 8.9 a simplified diagram for the process to get all measurements of a month.

Start

Gets parameters
(tag, names, unit
and parameter)

based on ID

Gets data from
UPHD based on

tag, parameter and
present date

Insert the given
dates, names, and

unit, and values
into the object list

Returns the object
list

Sets id End

Figure 8.10 simplified diagram for the process to get registered records.

set-classes

The two set-classes are based on the same idea, but they vary from each other due to the task
it shall perform. It is currently only the setting either a registered or calculated record that is
developed, while the update values for a month are not finished. Figure 8.11 shows a
simplified diagram for the process of setting either a registered or a calculated record. Figure
8.12 shows a simplified diagram for the process to the update values for a month. An

 8 Developed Backend

60

example of the primary function of setting either a registered or a calculated record in code is
Appendix C.

Start

Gets parameters
(tag, names and

parameter) based
on ID

Insert the values
into UPHD

Passes the JSON
into the class
containing id,
values, date

End

Selected
operation based

on the values
and date

To be stored

Not to be stored

Figure 8.11 a simplified diagram for the process to set setting either a registered or calculated record.

Start Insert the values
into UPHD

Passes the JSON into
the class containing
id, names, values,

date

End

Selected
operation based

on the values
and date

Not to be stored

Calculates the
values to be stored

Gets parameters (tag,
names, unit and parameter,

calculation and tags to
calculate) based on ID

To be stored

Figure 8.12 a simplified diagram for the process to the update values for a month.

Time Value

The static class Time Value is used for converting time values into names or dates for getting
Monthly Report and Get Yearly Report.

Calculation

The static calculation class holds all the calculations of all reports. The calculation types are
converting entity, mass balance regarding ratio, sum, subtraction, difference, and percentage.
The total variation of the unique calculation is currently 56. An example of sum and mass
balance regarding ratio as formula and code is given in Appendix A.

All calculations have the condition that all values must be stored inside the database. This
condition enables the calculation to be reusable in other reports. In addition, the usage of a
calculation inside another calculation has tried not to occur. This strategy is for making the
code more readable to others.

8.3.3 Data access layer
The data access layer is responsible for connecting the UPHD to set or get values from it. All
three classes of the data access layer are only in use if the operation is getting data from
UPHD. In contrast, for setting data to UPHD, only the class PHD Transmissions is used.
Figure 8.13 shows a principal sketch of getting a dataset from UPHD. Figure 8.14 shows a
principal sketch of setting a dataset to UPHD.

Start
Set time interval

for the data
Set the Tag

Get the data
from UPHD

First filtration of
the data

Connect to UPHD

End
 Second filtration

of the data
Disconnect from

UPHD
The data is
numbers?

Yes

No

Figure 8.13 principal sketch of getting a dataset from UPHD

 8 Developed Backend

61

Start Connect to UPHD End
Disconnect from

UPHD
Put data into UPHD

Figure 8.14 principal sketch of setting a dataset to UPHD

8.3.4 Parameters
All the needed information for getting and setting values into UPHD is located inside
different static parameter classes. The static classes are named up after the type of use case.
The design of these classes is based upon a database structure for being pushed into a
database later.

The information is stored inside a function, and the name of the function is the same as the
report. Figure 8.15 shows the static classes with the variable and functions for each of the
types of reports4.

MonthReport YearlyReport ManuallyRecords MeasurementOfAMonth SetRecords

+String[] name

+SetEmpty

+String[] name

+SetEmpty

+String[] name

+SetEmpty

+SetReport

+String[] unit

+String[] tag

+byte[] parameter

+byte[] calcType

+byte[] calcTag

+double perdiff

+String[] unit

+String[] tag

+byte[] parameter

+byte[] calcType

+byte[] calcTag

+SetReport

+String[] unit

+String[] tag

+byte[] parameter

+SetReport

+String[] name

+SetEmpty

+String[] unit

+String[] tag

+byte[] parameter

+SetReport

+String[] name

+SetEmpty

+String[] tag

+byte[] parameter

+SetReport

Figure 8.15 the static classes with the variable and functions for each of the types of reports.

8.4 Communication with UPHD
Communication with the different UPHD is enabled through the Phdapinet. The data access
layer uses the functions of the Phdapinet to perform its tasks.

8.4.1 Posting data
From the documentation from Honeywell Inc., the function put is the most suited for
inserting data into the UPHD. The put function is an overloaded function5 and requires a tag
name and value as a minimum for setting the value to UPHD. The used put function is the

4 Parameter is which UPHD the tag is stored and if the tag is number or text. Set report is short for all the typs
reports

5 An Overloaded function is diffentet function having the same name, where the values sent to the function
determine which one of them is used.

 8 Developed Backend

62

one requiring a tag name, a value, and a timestamp. This function enables the storage of a
value at a chosen timestamp inside UPHD.

8.4.2 Extraction of data
From the documentation from Honeywell Inc., the function fetch is the most suited for
getting data from the UPHD. Efficiently using the fetch function to get data from the UPHD,
a discriminant analysis was performed to extract data. The optimal extraction method
between time and data is connecting, setting the time interval, setting the tag, getting the tag's
data, and then disconnecting from the UPHD. To switch between tags and keep it efficient,
setting the tag and getting data is repeated numerous times before disconnecting.

8.4.3 Data storage
The storage of values inside the UPHD is essential to understand before the filtration can be
explained. All data of a tag stored inside UPHD uses the timestamp as the index. The UPHD
has existed for many years and has been modified. Hence the storage of data is not uniformly
done into UPHD and differs between the sites.

The current metering report system store most values with the timestamp at 03:00:00 the day
after. The manually registered values are stored either at 00:00:00 or 07:00:00. In addition,
there is a couple of inconsistency for a few tags back in time, where the timestamp is
somewhere between 21:00:00-03:00:00.

The raw values used for the monthly reports have different possibilities of being stored. The
primary method is to store data at midnight around 23:10 and 00:10 a clock the day after. The
system setting the timestamp in the UPHD is the metering server, implying summer- and
wintertime can give some problems with the timestamp setting.

The metering server holding the values is a redundant system meaning there are two metering
servers, so if one fails or reboots, the other server takes over. Whenever this occurs, the
metering server that stops sends the values to the UPHD before the other takes over. Once the
other server takes over, it also sends the values it holds to the UPHD.

The UPHD is also in charge of storing some raw values and using the parameter Scan
Frequency of the tag. The Scan Frequency is how often the tag shall be stored. Commonly
used Scan Frequencies are 3600 sec (every hour) or 86400 sec (every day). There are tags
with a Scan Frequency lower than every hour. In addition, there exist tags that are stored at
midday every day. The raw values stored in the midday are applying only to the current
measurement.

Inovyn has some unloading and filling stations where products are from and to boats and
cars. When a product has been loaded, the consignment note from the event is stored in
UPHD. However, the same consignment note can be stored once or many times in UPHD.

8.4.4 Filtration
The data extracted from each tag need to be filtered since it is not given that the correct data
was gotten. There exist several filters dependent on the desired output.

 8 Developed Backend

63

The first filtration is only viable for numbers and not for text. This filtration is done right
after the values of a tag are received from UPHD. The task for the filtration is to get viable
numbers and removes all data that is not viable. Figure 8.16 shows the flow diagram of the
first filtration.

Start
Value is a
number ?

Dismiss timestamp
and value

Add value to a
values list and add
timestamp to a list

Length of
dataset

no

no

end

yes

Confidence > 0
yes yes

no

Figure 8.16 the flow diagram of the first filtration.

The second filtration happens in a static filter class that contains different filters. There are
currently three filters in use for text, monthly numbers and yearly numbers. There is not a
second filter for either manual registration or actual measurement for a month.

The text filter reduces the number of text strings containing space in ASCII Encoding (%20)
and gets the correct comments for the monthly report. The reason is that the current system
sends space inside the comments to be stored in UPHD.

The yearly filter is to get all the numbers inside the desired year and add zero if there is a
missing value on a date. The range for the yearly filter is from the first of January to the
second of January next year. The timespan it gets values out of is from 21:00 to 04:00 the
next day.

The monthly filter is to get all the numbers inside the desired month and add zero if there is a
missing value on a date. The current monthly filter handles most of the different stored raw
values. Figure 8.17 shows the flow diagram of the current monthly filter.

 8 Developed Backend

64

start
List contains more
than 5 values per

day

Set start
time to start
at 00:01:00
And date of
month to 2

Set start
time to start
at 22:50:00
And date of
month to 1

yes

no Timestamp
between start time

and end time

Set end time
to start at
08:01:00

And date of
month to 2

Add value and
timestamp to the

checked lists

Add zero and
timestamp equal

end time to
checked lists

Increment
start time
and end
time with
one day

Inside the given
monthno

yes

yes
Get the indexes of the
first value of each day
after start time inside
the given month to a

list

no

Add the first value
with at the first index

value to a filter list

Compare current
value against

pervious value

Compare timespan
between current and

pervious value

Add value to filter
list

Increment
index value

Index inside
range

yesNot equal

Equal

Timespan > 23.5h Timespan < 23.5 h

end

no

Figure 8.17 the flow diagram of the current monthly filter.

The filter for a consignment note is currently in development. The reason is that there is
inconsistency in the stored raw values.

 9 Testing

65

9 Testing
It has been conducted tested at all stages of the development of the prototype.

9.1 UI
Testing of the code written for the UI has been tested in Google Chrome. The expansion
"React Develop Tool" has been used in Google Chrome. It gives the benefit of seeing which
element and component are rendered in order.

As the UI is booted from a C# application, it is possible to run the code with Visual Studio
2019 while editing the code with Visual Code. The benefit is the possibility to alter the code
of the user interface while it is running.

The test strategy has been to write the code while running in debug mode in the C#
application and test it as a new line of code has been implemented.

9.2 web API
The C# web API application has had a form for unit testing as the test strategy. The reason
for calling it a form for unit testing is because the application has been developed, compiled,
and tested in steps.

The first part has been developed in steps in the same order as operations in chapter 8.2. It
has mainly been focused on the logic of each module, and one test tag has been used for
developing and testing when needed. The second part has been implementing the information
and calculation if required for one of either a report or manual registration and then testing it.

9.3 Version test
A version test was performed before publishing and deploying the two applications to the
webserver. The version test consists of an integration test between the two applications and
tests all possible user input scenarios. The integration test consisted of testing the
communication work as planned between the two applications and checking the web
application's performance.

9.4 User test
The user test has been to let the user try out the prototype freely. It was added an information
page so the user could read what was implemented in the current version.

 10 Maintenance

66

10 Maintenance
The new application aims to reduce the required maintenance to a minimum. There will
always be some maintenance required for a software application.

10.1 Version updating
Most software is constantly under development to keep up, being enhanced, or adapt to new
technology. As this application has been developed with programming languages constantly
under development, it will require to be updated. The update rate dependent upon how often a
new version is released of the specific programming language. Since it has been used several
versions of frameworks and libraries for the applications, it is affected by its update rate.

Frontend

As per the time of writing this report, a new version of React library has already been
released. The current version of the React library is 17.0.2 [59], while the application is
currently 16.14.0. The typical rate of a new version of the React library is between one month
to six months. It has been announced that version 18.0.0 will come some time into the future,
but not given a release date.

In contrast to the React library, Microsoft has a release plan and support overview of the
current versions and the ones to come. Figure 10.1 shows the timeline of the version and
release time for the .Net Core and .Net. .Net Core and .Net reference to the ASP.NET Core,
Entity Framework Core, and more. LTS stands for lifetime support and is defined by
Microsoft to be three years.

Figure 10.1The release schedule for the .Net Core and .Net [60].

Backend

The .Net Framework 4.6.1 has not been given an exact date from Windows when going out
of support. As the .Net Core 2.1 has been used with the .Net framework, it will hold the
support to the .Net Framework 4.6.1 [61]. Currently, the .Net Framework 4.6.1 follows the
life cycles to the following operating system to Microsoft: Windows 7 SP1, Windows Server
2008 R2 SP1, Windows 8.1-updating, Windows Server 2012, Windows Server 2012 R2, and
Windows 10. [62]

Furthermore, the backend depends on the DLL from Honeywell Inc. So, to update the version
of the code. A new version of the DLL from Honeywell is needed, or a new type of solution
has to be developed with another structure for handling the DLL from Honeywell Inc.

 10 Maintenance

67

Summarize

Each of the applications will have different update rates. The frontend may have an update
rate of six to nine months, dependent upon each of the software's new releases. While the
backend can handle standstill until a new version or method for communication is available
for the UPHD by Honeywell Inc.

10.2 Modifications
Modifying the applications with new features and functions is dependent on the skills and
availability of knowledgeable resources. There are many possibilities for enhancing and
expanding the application, but it will depend on the requirements and the priority.

10.3 Change of reports
The setup for altering any of the reports has been developed as a straightforward procedure.
For altering a report, some information is needed of how it shall be changed. Under the
development of the prototype, a change in a report happened. Appendix B shows the
information that is needed for changing a report for the prototype.

 11 Comparison

68

11 Comparison
The main discussion is that the prototype a sustainable alternative compared to the current
system.

11.1 Technology
The selected framework, library, and programming language are all more sustainable than the
current system holds, and OS for the webserver is a newer version than the current system.
Since the framework, library, and programming language are more popular and commonly
used, it is probable to be known by other developers. It gives current and maybe new
employees the benefit of both Inoes Rafnes and Inovyn may program it.

11.2 Design
To compare the prototype against the current system, the contrast between them is the design.
The current system is an MPA containing the logic of each report inside each page. In
comparison, the prototype is a SPA containing all the logic on the server. The primary benefit
is that it reduces the load on the webserver since most of the content is sent at the first
request.

11.3 Performance
The performance value of time is an essential component to compare between the two
systems. A comparison test between the two systems has been performed. The comparison
test is based upon different operations that are equivalent for both systems, with changes in
time intervals if possible. It has been chosen a monthly report and a yearly report containing a
large amount numbers and is the monthly report of propane and yearly report of ethylene. In
addition, the presentation of manual registration of steam and air tested, and the new function
of the prototype of getting all raw values of a month. Table 11.1 shows the comparison test
between the two systems.

Table 11.1 the comparison test between the two systems.

Test Operation Response time for

the Current system

Response time for

The Prototype

1 Propane monthly report of May 2021 460 ms 573 ms

2 Propane monthly report of May 2020 389 ms 648 ms

3 Propane monthly report of May 2015 476 ms 587 ms

4 Propane monthly report of May 2010 339 ms 586 ms

5 Ethylene yearly report of 2021 526 ms 562 ms

 11 Comparison

69

6 Ethylene yearly report of 2020 826 ms 537 ms

7 Ethylene yearly report of 2015 922 ms 587 ms

8 Ethylene yearly report of 2010 925 ms 572 ms

9 Presentation of manual registration for Steam 329 ms 600 ms

10 Presentation of manual registration for Air 346 ms 586 ms

11 All raw values for the month of propane in May 2021 Not possible 964ms

12 All raw values for the month of propane in May 2020 Not possible 1,04s

13 All raw values for the month of propane in May 2015 Not possible 1.13s

14 All raw values for the month of propane in May 2010 Not possible 893ms

The table shows the prototype is slower than the current system, apart from the yearly report
back in time.

11.4 Maintenance
The most significant advantage of the prototype is its flexibility in modifying reports. The
current version of the prototype is only a tiny piece of the code that needs to be modified. In
contrast, the current system needs a new page with the changes implemented and a new code
for switching between the different pages depended on the time interval.

11.5 Functionality
The functionality of the manual registration has been enhanced in comparison to the current
system. The prototype is not time-sensitive on the registered date-time value since the time
value is fixed to the last registered date-time value. The current function can change a
registered value up to a year back in time. This part has not been transferred to the prototype
for the safeguarding of verified reports. Instead, the latest registered value can be reentered to
update the calculated values, and the previously calculated and registered values are
displayed for the current month.

The presentation of a monthly report is a shorter process in clicks and tabs than the current
system. Selecting a monthly report in the prototype displays the report for the present month,
and the time interval can be changed in the same view. In the current system, when a monthly
report is selected, a new tab is opened, and the time interval has to be selected before the
report is presented. To change the time interval, the user has to either go back to the page or
switch to the main page and select the monthly report again.

The new function of enabling the user to see all stored data for a month is enhancing the
prototype. In the current system, the user cannot see if the correct values are displayed.
Instead, the user has to check another application for the specific tag if the value is correct.

 11 Comparison

70

The monthly report and all raw values for the month are performed simultaneously in parallel
by the prototype. This parallel function gives the illusion to the user that one of them is there
instantly when switching between them the first time. In addition, if the user is disconnected
from the intranet and has loaded the monthly report or all raw values for the month, it is still
possible to switch between the two pages.

Updating a monthly report is equal in terms of how it shall be develop compared to the
current system, with one exception. The exception is the function verify and unverified of
daily measurement back in time. The reason is to take away the possibility of a report gets
unverified when a report is approved. Furthermore, it has been considered only to approve the
daily measurement after another approved daily measurement to enforce the daily
measurement in the proper order.

The presentation of the yearly report is equal between the prototype and the current system.
The current system holds one more function than the prototype, and that is that each monthly
value in the yearly report is linked to the monthly report. Hence of the MPA design.

11.6 Status
The new custom-made solutions for a new Metering Report system must be evaluated if it is
viable to replace the current system. The state of the prototype compared to the current
system is the following:

- Monthly reports
o 22 of 29 is implemented and tested.
o 7 of 29 is in development (Lye and HCL reports).

- Yearly report
o 19 of 19 yearly reports need to be changed structure (Logic).

- Manually registration
o 7 of 7 manual registration is ready to be implemented.

- Login
o is not implemented currently.

- Update values
o UI is finished for sending verification, comment, and values for a day.
o Calculations of correction and verified values are incomplete before storing

them in UPHD.
o Not developed a function for monthly correction values.

The development of the prototype is not finished and needs some more time to be completed.

11.7 Security
The security of the UI (C# application with React) is the same as the current system. Meaning
it is only possible to interact through a web browser on the intranet.

The Web API application security is open for anyone connected to the intranet. It allows
anyone to send a request with or without data to the application. The reason is for testing
purposes, allowing to test it while it is running on the server. If the Web API application goes

 11 Comparison

71

into operation, it will be bound to the frontend’s address. Meaning the Web API application
will only visible to the frontend on the intranet.

11.8 Future work
The development of the prototype requires some more work to be finished. The work that
needs to be completed is the following:

- Lye and HCL reports need a special filter for the consignment notes.
- Yearly reports need to change to the same structure as the monthly report. Meaning

the tags needs to be moved.
- Develop the login feature incorporation with IT.
- Develop the calculation function monthly reports for inserting values into UPHD.
- Decide where the monthly correction shall be implemented and develop into the

application.

A time frame of how much time it will take is not easy to give, but a simplified estimation
can be given. If the estimation is only coding and a final test, it can be estimated around one
month with one person. The uncertainties of the estimation are the availability of the resource
performing the task and the IT department for integrating the logging feature.

 12 Discussion

72

12 Discussion

12.1 Study for selection
The mixed study gave a perspective of the advancement of programming language
frameworks and libraries. The quantitative data revealed that a programming language does
not need to be new to being trendy. In contrast, frameworks and libraries seem to be the
opposite, where the newer it is, the better option. The Qualitative data is based mainly on
statements from different developers. The reason is that developers have a variating view on
essential for a framework, library, or programming language. In addition, they tend to
compare the type to others that are equivalent. The study gave insight into the essential
argument why to choose or not to choose the options.

The study on programming languages has reduced a vast amount of options to be selected.
Evaluating the selected options will endure into the future is ambitious to answer. The reason
is that no one knows what the future holds. By applying the most widely used and popular
parameters, it is possible to say it will endure sometime into the future. In addition, using an
OS, platforms, frameworks, libraries, or programming language supported by a large
corporation ensures someone is maintaining it even if it loses its popularity. In total, the
selected parts will be sustainable at the moment and for some time into the future.

In consideration of the choices made, most of them are developed and maintained by
Microsoft Corporation. The exceptions are JavaScript and React. The European Computer
Manufacturers Association maintains JavaScript, and it has become standardized. Facebook
maintains the React library. The sum gives the benefit of support, development, and version
updates.

It is one exception. Microsoft ISS may need to be swapped with Apache or Nginx if
Microsoft Corporation decides not to continue supporting and developing IIS. The reason is
the newly published report from Netcraft. Figure 12.1 shows the market share of all sites of
web hosting services from 29th March 2021 [63]. Microsoft ISS has lost a massive market
share since 2019, and the percentage is down to 5,96%. In terms of number, it means that
70,826,342 websites are hosted with Microsoft ISS.market share of all sites of web hosting
services from 29th March 2021

 12 Discussion

73

Figure 12.1 the market share of all sites of web hosting services from 29th March 2021 [63].

12.2 Development process
The schedule was based on reaching a new version at a given time. The tasks to be
implemented at each version have been focused on being a use case. As input from the user
has been given, the focus has been shifted to accommodate the suggested solution. The use
cases had a time frame to be developed before being cut off and moved on to the next use
case for showing progress.

The schedule was created to consider what was believed to be the most challenging part and
presented to the users. It has been reconned that the development process began in the wrong
order. The development process should have started with all aspects of the UPHD instead of
the UI.

Scrum has not been utilized in the sense of documenting progress and updating plan in digital
format. The project started with a digital format but was discharged because of the time usage
that went into it. The development process has relied on Scrum. The tasks to implement have
been written on paper and crossed out on completion. The downside of not logging digital is
that there are no good records of the progress. The sprints were often prolonged for trying to
complete the tasks.

The scrum method is more suited for teamwork to track each team member and discuss the
integration between parts of the application. In addition, ideas can be discussed, and the
responsibility of parts can be appointed amongst team members. As this development has
been a one-person show, all parts fall on one person. The solution has been to try seeing the
whole application before a new function was to be implemented. This has led to each use
case treated as independent parts of the application, and similar processes between each use
case may have been overlooked.

 12 Discussion

74

12.3 Frontend development
The creation of the web application started with a steep learning curve. It has been put more
time into the development of the UI than assumed. The reason for the time consumption is
because JavaScript and React were not known when the project started. It may seem to be a
poor decision to select JavaScript with the React library for the frontend. In an optimistic
view, this meant that many concepts had to be inspected and many attempts to get it right.
The upside is that the code gets tested quite heavily to ensure it works properly. While the
downside is that some code development has taken more time, and it may not contain the
optimal solution for solving part of the code.

In addition, Elm was tried out to see if it could be a good option. The reason for trying out
Elm was the performance, but the documentation and community were poor and trim. It was
put aside after a week of learning the structure of the programming language. The time spent
reviewing and testing Elm was a waste of time, but it gave some insight into how it can be
utilized. It also backs up the arguments for not selecting it for the UI.

The current version of the web application holds an example of the downside. As React uses
components, it is possible to create every function to enable reuse and easier maintenance of
the code. Instead, each class has been treated independently, holding all the functions needed
to perform its tasks. It is not an optimal solution for maintaining the code since this gives a
large script inside each class. However, it is a solution, and it is possible to rewrite the script.
Even though the class script is large, it is scripted with the functions in a sequence on the
anticipated events, making the structure clear to the creator but not for others.

The presentation of the table is a function that is possible to recreate as one or more
components. The function itself is considered optimal because it enables one presentation
method to fit them all instead of having many individual functions for each report. Hence, it
gives the benefit of not having specific variables in the code.

The current version of the UI holds the names and index of all the different reports, meaning
they are constant in the code. A goal has been to have a minimum amount of constants in the
UI to make it more dynamic to change. It may be possible to integrate them into a database
later to increase the UI's flexibility.

12.4 Backend development
The code of getting and setting data to UPHD has been altered a couple of times. The altering
depends on how the frontend desired the data, storage of data inside UPHD, and keeping it
flexible. It has been challenging to develop a two parted system if one part changes, the other
has to follow, and the backend has been suffering from it.

The major problem has been the extraction of data from the two UPHD. The goal was to
create a universal way of getting the data for all reports back in time. The patterns of stored
data have been tried to be handled by a universal filter. The strategy of one universal filter
can be seen as a poor decision because it is time-consuming to expand the filter each time a
new pattern unfolds. It may have been better to create unique filters for reducing the time of
development. The strategy of keeping the universal filter was to enable the flexibility of
changing the reports. In addition, it gives the benefit of making the system robust against new
raw values that are added to reports.

 12 Discussion

75

The implementation of the parameter classes has been one of the most time-consuming parts
after the filter. All tags, names, units, parameters, type of calculation, tags to be calculated,
and percentage difference values have been written into the application. The calculation for a
specific report has been implementing alongside the implementation of the report.

In light of the dependency on .Net Framework for the DLL Phdapinet, the web application
was split into two parts. The decision can be review as both good and bad to make. The
positive is that the Web API can be integrated with other applications, and their maintenance
is separate from each other. The downside is that two web applications run on the same
server, and the communication between them takes a bit longer time.

12.5 Undeveloped function
The function that has not been developed is the login and adjustment of the total monthly
values. The function of adjustment of the total monthly values was down prioritized since it is
a rarely used function. It will have to be implemented at a later stage.

The login function stopped being developed after discussing with the users and IT to use Active
Directory Domain Service (AD DS) for in logging. The short answer for stopping the
development is the lack of knowledge to utilizing AD DS in the application with the system of
the IT department. However, it is a better and safer solution to give authorization to the user
through the windows login. The benefit is that the authorized personnel do not need to log in,
and the application can be view by others safely.

12.6 Testing
The prototype was tested as it was developed. The strategy for testing may have been better.
Instead of partly test it whenever a new change had been added, it could have been
implemented all parts at once, which means not implemented one and one report and test it.

When the testing against both UPHD started, for the first yearly report, the challenges started.
The first issue was seeing the different patterns of the stored data, which has been the main
challenge. As more and more report was implemented, new patterns of how the data was
stored were revealed.

Whenever a new pattern had been implemented to be handled by the filter, all previously
implemented reports must be retested. As a result of all this testing, the filter is split into three
filters to reduce testing time. The three filters are for text values, yearly numbers, and
monthly numbers. The reason for splitting the filter this way is that the yearly number does
not rely on monthly numbers because yearly numbers are approved and stored values.

Testing with the users was very beneficial for the prototype, especially for the UI. The users
that tested the prototype gave input on desired functionality, features, and layout. It could
have been more considerable interest by the users because three users have given input. Of
the three users, only one of them works directly with the current system daily.

It has not created a test report of the prototype because of it is not fully developed. The
prototype has mainly been tested for an extension or modification, which has not had a
specific test document.

 12 Discussion

76

12.7 Documentation
Currently, the documentation is an excel sheet containing all the tags and a word document
containing the report set for some of the reports. It has been focused on developing the
product rather than documenting it. In light of the development process, it should have been
considered to document more.

The excel sheet contains all 566 tags in use of the current system. Each tag is associated with
the product, site owner, virtual or raw value, usage in a report, written to, Source Tag Type6,
Datatype7, and Scan Frequency. The idea of the excel sheet is to transfer the useable
information into a document for redevelopment purposes.

The word document is going to be a part of the final documentation for the users. The idea of
this document is to be used for changing reports. Implying it will give an overview of the
structure of all the reports and calculations. The word document holds all monthly reports in
the structure shown in appendix B, all the calculations, manual registration, update values,
measurement of a month, and yearly reports.

6 Soure Tag Type is some letter that stands for add functinality of the datatype in the UPHD, eks. I4 = Interger
datatype, L8 = Long Interger datatype, F4 floating point data type, etc.

7 Datatype is what type of variable the tag is in UPHD, eks. float, integer, char16, datetime, etc.

 13 Enhancement

77

13 Enhancement
The prototype still has some incompleteness that will be needed to complete before moving
on to enhancing it.

13.1 Database
The convenient enhancement is to remove the parameter classes and add them into a database.
This improvement will only make it easier for someone to alter the data without republishing
the application. Figure 13.1 gives an idea of implementing the information into a database. The
enhancing part would be creating a page for altering the reports in the UI, giving authorized
personnel the possibility to alter and create new reports. In addition, it will be needed to
increase the number of calculations to give more options to be used.

Get Month Report Year Report Manually records Actual measurementsSet Month Report

Parameters

Get Month Report NamePK

Tag

Name

Type of Calculation

Year Report NamePK

Tag

Name

Manually recod namePK

Tag

Name

Unit

Database

Difference Value

Tag to Calculate

Unit

Database

Type of Calculation

Tag to Calculate

Unit

Database

Actual measurement namePK

Tag

Name

Unit

Database

Set Month Report NamePK

Tag

Name

Unit

Database

IdPK

Set Month Report NameFK

Get Month Report NameFK

Year Report NameFK

Manually recod nameFK

Actual measurement nameFK

Figure 13.1 an idea of implementing the information into a database.

13.2 Correction calculation
The correction calculation is based on input from a user. The problem occurs when a sensor
is out for calibration. At the same time, the flow of the product is still being transferred to the

 13 Enhancement

78

customer. Currently, it is done a manual estimation of the amount of product that was
transferred. The estimation is based on the flow of the product before and after the
calibration. Furthermore, compared to the other measurement on the same flow.

The idea is to implement the estimation calculation into the application. The reason for
implementing it in the application is that the estimated value is a correction value for daily
measurement of a report. In addition, it would reduce the time of doing the calculation.

13.3 Automated verification
The automated verification lets the application verify by itself and notify the authorized
personnel in charge when an abnormal event occurs. The abnormal events and what is
reconned as approved must be specified.

A criterion can be to evaluate the previous values if the new value is reasonable. If the report
contains a difference calculation, it is possible to evaluate the result if the new values can be
reasonable.

The process of determining if a daily measurement is viable can be set to a specific time. The
compelling time would be around after eight and before ten in the morning. Hence, the report
needs to be verified before eleven.

 14 Conclusion

79

14 Conclusion
The selected programming languages for the prototype are sustainable for the present time. It
is not possible to say how long into the future they will endure. However, all the been selected
programming languages with frameworks are widely used and popular amongst developers and
backed by large Corporations. Hence, the prototype will have the endurance to chosen
programming languages.

The prototype is two applications cooperating for presenting the metering reports and handle
user input. Either of the application can be swapped out and integrated with another application.
They are resulting in simplifying the process of replacing one of them if needed.

The development process has shown the complexities of developing a new application
integrated with two existing UPHDs and adjusting the results to another application with
another design.

The result of the development process is a flexible design. The flexibility is arranged in the
different operations by having one process for performing desired result dependent upon the
information. Resulting in the maintenance and modifications are a more straightforward
procedure.

Enabling the users to test the prototype as it has been developed has proven useful for both
parties. The testing with the users has yielded a new function of displaying the stored data in
UPHDs. The new function enables the users to see if the correct value is displayed in the
metering report or if it has been stored different values.

The prototype is a custom-made solution that can replace the current system when it is
completed. In addition, the prototype has the potential of being a better system in terms of
functionality than the current system.

 References

80

References

[1] Mircosoft, "A break from the past, part 2: Saying goodbye to ActiveX, VBScript,
attachEvent…," Microsoft Corporation , [Online]. Available:
https://blogs.windows.com/msedgedev/2015/05/06/a-break-from-the-past-part-2-
saying-goodbye-to-activex-vbscript-attachevent/. [Accessed 11 11 2020].

[2] Microsoft Corporation , "Out-of-date ActiveX control blocking," [Online].
Available: https://docs.microsoft.com/en-us/internet-explorer/ie11-deploy-
guide/out-of-date-activex-control-blocking. [Accessed 11 11 2020].

[3] Microsoft, "Using VBScript," Microsoft Corporation, 31 05 2018. [Online].
Available: https://docs.microsoft.com/en-us/windows/win32/lwef/using-vbscript.
[Accessed 10 02 2021].

[4] Microsoft, "ASP Overview," Microsoft Corporation, 16 06 2017. [Online].
Available: https://docs.microsoft.com/en-us/previous-versions/iis/6.0-
sdk/ms524929(v=vs.90). [Accessed 20 04 2021].

[5] WHATWG, W3C, "HTML Living Standard," WHATWG, W3C, 20 04 2021.
[Online]. Available: https://html.spec.whatwg.org/. [Accessed 21 04 2021].

[6] Microsoft, "JScript (ECMAScript3)," Microsoft Corporation, 24 11 2011.
[Online]. Available: https://docs.microsoft.com/en-us/previous-
versions//hbxc2t98(v=vs.85)?redirectedfrom=MSDN. [Accessed 20 04 2021].

[7] Microsoft, "What Is VBScript?," Microsoft Corporation, 19 04 2011. [Online].
Available: https://docs.microsoft.com/en-us/previous-
versions//1kw29xwf(v=vs.85)?redirectedfrom=MSDN. [Accessed 20 04 2021].

[8] MDN Web Docs (previously known as MDN — the Mozilla Developer Network)
, "CSS: Cascading Style Sheets," MDN Web Docs , 14 04 2021. [Online].
Available: https://developer.mozilla.org/en-US/docs/Web/CSS. [Accessed 21 04
2021].

[9] S. M. S. Kabir, Basic Guidelines for Research: An Introductory Approach for All
Disciplines, Chittagong-4203, Bangladesh: Book Zone, 2016, pp. 202-204.

[10] N.-O. Skeie, Software Engineering Object-oriented Analysis, Design, and
Programming using UML and C#, Porsgrunn: USN, 2018.

[11] P. Christensson, "Frontend," Sharpened Productions , [Online]. Available:
https://techterms.com/definition/frontend. [Accessed 10 05 2021].

[12] P. Christensson, "Backend," Sharpened Productions , [Online]. Available:
https://techterms.com/definition/backend. [Accessed 10 05 2021].

 References

81

[13] P. Christensson, "Website," Sharpened Productions , [Online]. Available:
https://techterms.com/definition/website. [Accessed 10 05 2021].

[14] P. Christensson, "Web Page," Sharpened Productions , [Online]. Available:
https://techterms.com/definition/webpage. [Accessed 10 05 2021].

[15] M. Uchiha, "What are the differences between server-side and client-side
programming?," Stack Exchange Inc, 07 08 2018. [Online]. Available:
https://softwareengineering.stackexchange.com/questions/171203/what-are-the-
differences-between-server-side-and-client-side-programming. [Accessed 10 05
2021].

[16] Computer Hope, "Programming language," Computer Hope, 13 03 2021. [Online].
Available: https://www.computerhope.com/jargon/p/programming-language.htm.
[Accessed 10 05 2021].

[17] Eleven Fifty Academy, "What is a Framework in Programming Language?,"
Eleven Fifty Academy, 22 10 2020. [Online]. Available:
https://elevenfifty.org/blog/what-is-a-framework-in-programming-language/.
[Accessed 10 05 2021].

[18] A. DEVERO, "Programming languages, libraries and frameworks," ALEX
DEVERO BLOG, [Online]. Available: https://blog.alexdevero.com/programming-
languages-libraries-and-frameworks/. [Accessed 10 05 2021].

[19] Awio Web Services LLC, "Web Browser Usage Trends," Awio Web Services
LLC, 01 04 2021. [Online]. Available: https://www.w3counter.com/trends.
[Accessed 23 04 2021].

[20] Paessler AG, "IT Explained: Server," Paessler AG, [Online]. Available:
https://www.paessler.com/it-explained/server. [Accessed 22 04 2021].

[21] What Is My IP Address, "What is a Web Server?," What Is My IP Address,
[Online]. Available: https://whatismyipaddress.com/web-server. [Accessed 22 04
2021].

[22] Netcraft Ltd, "March 2019 Web Server Survey," Netcraft Ltd 28th February,
2019, 2019 02 2019. [Online]. Available:
https://news.netcraft.com/archives/2019/02/28/february-2019-web-server-
survey.html. [Accessed 25 02 2021].

[23] UpGuard Team, "IIS vs Apache: Which is the Best Web Server?," UpGuard, Inc.,
15 02 2021. [Online]. Available: https://www.upguard.com/blog/iis-apache.
[Accessed 22 04 2021].

[24] TIOBE Software BV, "TIOBE Index for March 2021," TIOBE Software BV, 10
03 2021. [Online]. Available: https://www.tiobe.com/tiobe-index/. [Accessed 10
03 2021].

 References

82

[25] Stack Exchange Inc, "stackoverflow," Stack Exchange Inc, 21 04 2021. [Online].
Available: https://stackoverflow.com/. [Accessed 21 04 2021].

[26] GitHub Inc., "GitHub," GitHub Inc., 21 04 2021. [Online]. Available:
https://github.com/. [Accessed 21 04 2021].

[27] S. O'Grady, "The RedMonk Programming Language Rankings: June 2020,"
RedMonk, 27 07 2020. [Online]. Available:
https://redmonk.com/sogrady/2020/07/27/language-rankings-6-20/. [Accessed 21
04 2021].

[28] Stack Exchange Inc, "2020 Developer Survey," Stack Exchange Inc, 28 02 2020.
[Online]. Available: https://insights.stackoverflow.com/survey/2020#technology-
how-technologies-are-connected. [Accessed 21 04 2021].

[29] L. K. Cox, "Web Design 101: How HTML, CSS, and JavaScript Work," HubSpot,
Inc., 26 10 2020. [Online]. Available: https://blog.hubspot.com/marketing/web-
design-html-css-
javascript#:~:text=HTML%20and%20CSS%20are%20actually,every%20web%20
page%20and%20application. [Accessed 10 05 2021].

[30] Q-Success, "Usage statistics of JavaScript as client-side programming language on
websites," Q-Success, [Online]. Available:
https://w3techs.com/technologies/details/cp-javascript. [Accessed 10 05 2021].

[31] S. Varaksina, "Single-Page Applications vs Multi-Page Applications: The Battle
of the Web Apps," Mind Studios, 30 09 2020. [Online]. Available:
https://themindstudios.com/blog/spa-vs-mpa/. [Accessed 22 04 2021].

[32] S. Valuy, "A Comparison of Single-Page and Multi-Page Applications," 17 06
2020. [Online]. Available: https://dzone.com/articles/the-comparison-of-single-
page-and-multi-page-appli. [Accessed 22 04 2020].

[33] P. Skólski, "Single-page application vs. multiple-page application," Neoteric Sp. z
o.o., 01 12 2016. [Online]. Available: https://neoteric.eu/blog/single-page-
application-vs-multiple-page-
application/?utm_source=medium.com&utm_medium=social&utm_content=neo
&utm_campaign=blog. [Accessed 22 04 2021].

[34] J. M. J. W. D. W. A. W. R. A. J. A. S. J. K. I. E. Y. k. KirstenS, "Cross Site
Scripting (XSS)," OWASP Foundation, Inc., [Online]. Available:
https://owasp.org/www-community/attacks/xss/. [Accessed 21 04 2021].

[35] E. Czaplicki, "A delightful language for reliable web applications.," [Online].
Available: https://elm-lang.org/. [Accessed 05 16 2021].

[36] AltexSoft, "The Good and the Bad of Vue.js Framework Programming,"
AltexSoft, 11 09 2019. [Online]. Available:

 References

83

https://www.altexsoft.com/blog/engineering/pros-and-cons-of-vue-js/. [Accessed
16 05 2021].

[37] E. Bojanowska, "Pros and Cons of the Vue.js Framework," Naturaily Sp. z o.o., 30
11 2018. [Online]. Available: https://naturaily.com/blog/pros-cons-vue-js.
[Accessed 16 05 2021].

[38] DDI DEVELOPMENT, "Pros and Cons of Vue.js Framework Programming,"
DDI DEVELOPMENT, 12 2020. [Online]. Available: https://ddi-
dev.com/blog/programming/the-good-and-the-bad-of-vue-js-framework-
programming/. [Accessed 16 05 2021].

[39] R. Patel, "Pros and Cons of the Vue.js Framework," Medium, 17 09 2019.
[Online]. Available: https://ronakataglowid.medium.com/pros-and-cons-of-the-
vue-js-framework-8015dcbc05ef. [Accessed 16 05 2021].

[40] E. Czaplicki, "Elm: Concurrent FRP for Functional GUIs," 03 30 2012. [Online].
Available: https://elm-lang.org/assets/papers/concurrent-frp.pdf. [Accessed 16 05
2021].

[41] J. Warden, "React Redux Thunk vs Elm," WordPress, 5 10 2019. [Online].
Available: https://jessewarden.com/2019/10/react-redux-thunk-vs-elm.html.
[Accessed 16 05 2021].

[42] T. Assus, "10 reasons why you should give Elm a try," Medium, 22 08 2016.
[Online]. Available: https://medium.com/elmlightments/10-reasons-why-you-
should-give-elm-a-try-62b56d305643. [Accessed 16 05 2021].

[43] C. Gregori, "Elm and why it’s not quite ready yet," Medium, 29 05 2019.
[Online]. Available: https://blog.bitsrc.io/elm-and-why-its-not-quite-ready-yet-
2c516a81e252. [Accessed 16 05 2021].

[44] Codementor, "Study of Programming Languages Not to Learn in 2019,"
Codementor, 16 04 2019. [Online]. Available:
https://www.codementor.io/blog/worst-languages-2019-
6mvbfg3w9x#:~:text=As%20one%20of%20the%20languages,by%20Objective%
2DC%20and%20CoffeeScript.. [Accessed 16 05 2021].

[45] N. Pandit, "What And Why React.js," C# Corner, 10 02 2021. [Online]. Available:
https://www.c-sharpcorner.com/article/what-and-why-reactjs/. [Accessed 22 04
2021].

[46] T. GRABSKI, "React JS Pros and Cons in 2020," Pagepro, 10 08 2020. [Online].
Available: https://pagepro.co/blog/react-js-pros-and-cons-in-2020/. [Accessed 22
04 2021].

[47] D. Kumar, "What are the Pros and Cons of React," KnowledgeHut, 24 03 2021.
[Online]. Available: https://www.knowledgehut.com/blog/web-development/pros-
and-cons-of-react. [Accessed 22 04 2021].

 References

84

[48] A. Insignares, "React Pros and Cons: What are the Advantages and Disadvantages
of ReactJS?," Koombea, Inc., 10 03 2021. [Online]. Available:
https://www.koombea.com/blog/react-pros-and-cons-what-are-the-advantages-
and-disadvantages-of-reactjs/. [Accessed 22 04 2021].

[49] Learneroo, "What Programming Language Should You Learn?," Learneroo,
[Online]. Available: https://www.learneroo.com/modules/9/nodes/620. [Accessed
16 05 2021].

[50] T. Fairy, "Java VS Python VS C# detailed comparison, which language to learn
first?," Tech Fairy, [Online]. Available: https://tech-fairy.com/java-vs-python-vs-
c-detailed-comparison-which-language-to-learn-first/. [Accessed 16 05 2021].

[51] A. Goel, "Best Programming Languages to Learn in 2021 (for Job & Future),"
hackr.io, 11 05 2021. [Online]. Available: https://hackr.io/blog/best-programming-
languages-to-learn-2021-jobs-future. [Accessed 16 05 2021].

[52] M. Chand, ".NET Core vs .NET," C# Corner, 05 07 2020. [Online]. Available:
https://www.c-sharpcorner.com/article/difference-between-net-framework-and-
net-core/. [Accessed 16 05 2021].

[53] Codecademy, "What Is an IDE?," Codecademy, [Online]. Available:
https://www.codecademy.com/articles/what-is-an-ide. [Accessed 23 04 2021].

[54] Microsoft Corporation, "Visual Studio 2019," Microsoft Corporation, [Online].
Available: https://visualstudio.microsoft.com/vs/. [Accessed 23 04 2021].

[55] Microsoft Corporation, "Redefined.," Microsoft Corporation, [Online]. Available:
https://code.visualstudio.com/. [Accessed 23 04 2021].

[56] Postman, Inc., "The Collaboration Platform for API Development," Postman, Inc.,
[Online]. Available: https://www.postman.com/. [Accessed 23 04 2021].

[57] JetBrains s.r.o., "Free .NET Decompiler and Assembly Browser," JetBrains s.r.o.,
[Online]. Available: https://www.jetbrains.com/decompiler/. [Accessed 23 04
2021].

[58] P. M. Shubham Yadav, "ReactJS | Lifecycle of Components," geeksforgeeks, 22
01 2021. [Online]. Available: https://www.geeksforgeeks.org/reactjs-lifecycle-
components/. [Accessed 02 05 2021].

[59] Facebook Inc, "React Versions," Facebook Inc, [Online]. Available:
https://reactjs.org/versions/. [Accessed 03 05 2021].

[60] Microsoft Corporation, ".NET Support Policy," Microsoft Corporation, [Online].
Available: https://dotnet.microsoft.com/platform/support/policy. [Accessed 03 05
2021].

 References

85

[61] Jamshed, ".NET Core 2.1 will reach End of Support on August 21, 2021,"
Microsoft Corporation, 04 03 2021. [Online]. Available:
https://devblogs.microsoft.com/dotnet/net-core-2-1-will-reach-end-of-support-on-
august-21-
2021/#:~:text=The%203%2Dyear%20lifecycle%20for,version%20will%20contin
ue%20to%20run.&text=NET%20Core%202.1%20starting%20September,issue%2
0these%20security%20updates%. [Accessed 03 05 2021].

[62] Microsoft Corporation, "Hva er retningslinjene for livssyklus på ulike versjoner av
.NET Framework?," Microsoft Corporation, 09 07 2020. [Online]. Available:
https://docs.microsoft.com/nb-no/lifecycle/faq/dotnet-framework. [Accessed 03 05
2021].

[63] Netcraft Ltd, "March 2021 Web Server Survey," Netcraft Ltd, 29 03 2021.
[Online]. Available: https://news.netcraft.com/archives/2021/03/29/march-2021-
web-server-survey.html. [Accessed 12 05 2021].

[64] Encyclopædia Britannica, Inc, "Encyclopædia Britannica," 09 02 2021. [Online].
Available: https://www.britannica.com/technology/computer.

[65] C. Ostlund, "A GUIDE TO THE IT LIFECYCLE: WHAT IT IS & WHAT YOU
NEED TO KNOW," MARCO TECHNOLOGIES, LLC, 27 08 2019. [Online].
Available: https://www.marconet.com/blog/a-guide-to-the-it-lifecycle-what-it-is-
what-you-need-to-
know#:~:text=What%20is%20the%20IT%20Life,technology%20enters%20its%2
0usable%20stage.. [Accessed 2021 09 02].

[66] S. Hardmeier, "The History of Internet Explorer," Microsoft Corporation, 25 08
2005. [Online]. Available:
https://web.archive.org/web/20051001113951/http://www.microsoft.com/window
s/ie/community/columns/historyofie.mspx. [Accessed 10 02 2021].

[67] MDN Web Docs (previously known as MDN — the Mozilla Developer Network),
"developer.mozilla.org," MDN Web Docs, 18 12 2020. [Online]. Available:
https://developer.mozilla.org/en-US/docs/Glossary/Microsoft_Internet_Explorer.
[Accessed 19 04 2021].

[68] I. Codesido, "What is front-end development?," Guardian News & Media Limited,
28 09 2009. [Online]. Available:
https://www.theguardian.com/help/insideguardian/2009/sep/28/blogpost.
[Accessed 21 04 2021].

[69] U. ROUZ, "IS THERE A VIABLE ALTERNATIVE TO JAVASCRIPT?,"
webdesignerdepot, 21 11 2019. [Online]. Available:
https://www.webdesignerdepot.com/2019/11/is-there-a-viable-alternative-to-
javascript/. [Accessed 22 04 2021].

[70] D. R. C. X. Han Liang, "What is a DLL," Microsoft Corporation, 22 09 2020.
[Online]. Available: https://docs.microsoft.com/en-us/troubleshoot/windows-

 References

86

client/deployment/dynamic-link-library#the-net-framework-assembly. [Accessed
26 04 2021].

[71] H. L. R. C. Simonx Xu, "What is a DLL," Microsoft Corporation, 22 09 2020.
[Online]. Available: https://docs.microsoft.com/en-us/troubleshoot/windows-
client/deployment/dynamic-link-library#the-net-framework-assembly. [Accessed
26 04 2021].

[72] Microsoft Corporation, "Microsoft .NET Framework," Microsoft Corporation,
[Online]. Available: https://docs.microsoft.com/nb-
no/lifecycle/products/microsoft-net-framework. [Accessed 03 05 2021].

 Appendices

87

Appendices

Appendix A, examples of calculations in formula and code

𝑆𝑢𝑚 = 𝑎 + 𝑏 + 𝑐 + 𝑑 (B.1)

𝑎 ்

= ൬𝑎௪் +
𝑎௪ ் ∗ 𝑎 య

𝑎௪ య
൰

+
ቀ𝑎 +

𝑎௪ ் ∗ 𝑎 య

𝑎௪ య
ቁ ∗ (𝑏 +

𝑏௪ ் ∗ 𝑏 య

𝑏௪ య
+ 𝑐 +

𝑐௪ ் ∗ 𝑐 య

𝑐௪ య
)

(𝑎 +
𝑎௪ ் ∗ 𝑎 య

𝑎௪ య
+ 𝑑 +

𝑑௪ ் ∗ 𝑑 య

𝑑௪ య
+ 𝑒 +

𝑒௪ ் ∗ 𝑒 య

𝑒௪ య
)

(B.2)

 Appendices

88

Appendix B, change of a Month Reports

Month report, Process Fuel Gas Ineos Bamble pre April 2021

Tag to get data from PHD:

Setup of the report in terms of information:

 Appendices

89

Presentations of the report in the application:

Month report, Process Fuel Gas Ineos Bamble after April 2021

Tag to get data from PHD:

Setup of the report in terms of information:

 Appendices

90

Presentations of the report in the application:

 Appendices

91

Appendix C

 Appendices

92

Appendix D,

 Appendices

93

Appendix E, code of Manual Registration

